Stability of stationary conditions of some population models with variable coefficients
Matematičeskoe modelirovanie, Tome 20 (2008) no. 5, pp. 69-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

There have been conducted a research of stability of stationary conditions of some mathematical models with variable coefficients which describe the dynamic of number of isolated and interacted populations. The case studies have been examined, when these coefficients have a limit if $t\to+\infty$ or when these are periodic functions, satisfying Lipschitz's condition with a sufficiently small Lipschitz's constant. Continuous models as well as discrete ones have been researched.
@article{MM_2008_20_5_a3,
     author = {A. V. Lasunsky},
     title = {Stability of stationary conditions of some population models with variable coefficients},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_5_a3/}
}
TY  - JOUR
AU  - A. V. Lasunsky
TI  - Stability of stationary conditions of some population models with variable coefficients
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 69
EP  - 77
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_5_a3/
LA  - ru
ID  - MM_2008_20_5_a3
ER  - 
%0 Journal Article
%A A. V. Lasunsky
%T Stability of stationary conditions of some population models with variable coefficients
%J Matematičeskoe modelirovanie
%D 2008
%P 69-77
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_5_a3/
%G ru
%F MM_2008_20_5_a3
A. V. Lasunsky. Stability of stationary conditions of some population models with variable coefficients. Matematičeskoe modelirovanie, Tome 20 (2008) no. 5, pp. 69-77. http://geodesic.mathdoc.fr/item/MM_2008_20_5_a3/

[1] Ricker W. E., “Stock and recruitment”, J. Fich. Res. Board Canada, 20 (1960), 559–623

[2] Shapiro A. P., “Matematicheskie modeli konkurentsii”, Upravlenie i informatsiya, 10, DVNTs AN SSSR, Vladivostok, 1974, 5–75

[3] May R. M., “Biological populations obeying difference equations: stable points, stable cycles and chaos”, J. Theor. Biol., 51 (1975), 511–524 | DOI

[4] Zhao Jiandong, Jiang Jifa, “Average conditions for permanence and extinction in nonautonomous Lotka–Volterra system”, J. Math. Anal. and Appl., 299:2 (2004), 663–675 | DOI | MR | Zbl

[5] Muroya Yoshiaki, “Contractivity and global stability for discrete models of Lotka–Volterra type”, Hokkaido Math. J., 34:2 (2005), 277–297 | MR | Zbl

[6] Chen Xiaoxing, “Global stability of periodic solutions for a discrete time nonautonomous ratiodependent predator-prey system”, J. Fuzhou Univ., Natur. Sci., 32:4 (2004), 417–419 | MR | Zbl

[7] Elaydi Saber N., “Nonautonomous difference equations: open problems and conjectures”, Difference and Differential Equations: Proceedings of the 7 Conference on Difference Equations and Applications (ICDEA) (Changsha, Aug. 12–17, 2002), Amer. Math. Soc., Providence, R.I., 2004, 423–428 | MR | Zbl

[8] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. | MR

[9] Demidovich V. B., “Pravilnye lineinye raznostnye sistemy”, Differentsialnye uravneniya, 7:5 (1971), 902–909 | Zbl

[10] Lasunskii A. V., “Otsenki rosta reshenii lineinykh sistem raznostnykh uravnenii cherez koeffitsienty i ikh prilozhenie k voprosam ustoichivosti”, Differentsialnye uravneniya, 31:11 (1995), 1931–1932

[11] Demidovich V. B., “Ob odnom priznake ustoichivosti raznostnykh uravnenii”, Differentsialnye uravneniya, 5:7 (1969), 1247–1255 | Zbl

[12] Chetaev N. G., Ustoichivost dvizheniya, Gostekhizdat, M.-L., 1946, 204 pp.

[13] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[14] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976, 288 pp. | MR

[15] Adrianova L. Ya., Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo S.-Peterburgskogo universiteta, SPb., 1992, 240 pp. | MR

[16] Shapiro A. P., Luppov S. P., Rekurrentnye uravneniya v teorii populyatsionnoi biologii, Nauka, M., 1983, 134 pp. | MR

[17] Demidovich V. B., “Ob asimptoticheskom povedenii reshenii konechno-raznostnykh uravnenii. II. Pravilnye uravneniya”, Differentsialnye uravneniya, 11:6 (1975), 1091–1107 | MR | Zbl

[18] Lasunskii A. V., “K teorii ustoichivosti lineinykh sistem raznostnykh uravnenii”, Differentsialnye uravneniya, 34:4 (1998), 567–569 | MR | Zbl