Nonlinear regression modeling on the base of Monte-Carlo method
Matematičeskoe modelirovanie, Tome 20 (2008) no. 4, pp. 78-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective method of nonlinear regression modeling is proposed, which is based on direct minimization of the sum of the squares of the differences by means of Monte-Carlo procedures. Such approach allow the application for nonlinear modeling practically any elementary functions and theirs compositions. The selection of one-dimensional function for real experimental data is realized by means of the graph-analytical method. The multidimensional regression function is constructed by means of the consistent transition from one-dimensional model to two-dimensional model and further by transforming the model coefficients of the proceeded level in the functions of the additionally accounted factor. New possibilities for the nonlinear regression analyses are demonstrated on three real examples from sphere of the mycology, plant biology and chemical technology.
@article{MM_2008_20_4_a6,
     author = {A. D. Kashirkin and J. M. Aivazova},
     title = {Nonlinear regression modeling on the base of {Monte-Carlo} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {78--86},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_4_a6/}
}
TY  - JOUR
AU  - A. D. Kashirkin
AU  - J. M. Aivazova
TI  - Nonlinear regression modeling on the base of Monte-Carlo method
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 78
EP  - 86
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_4_a6/
LA  - ru
ID  - MM_2008_20_4_a6
ER  - 
%0 Journal Article
%A A. D. Kashirkin
%A J. M. Aivazova
%T Nonlinear regression modeling on the base of Monte-Carlo method
%J Matematičeskoe modelirovanie
%D 2008
%P 78-86
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_4_a6/
%G ru
%F MM_2008_20_4_a6
A. D. Kashirkin; J. M. Aivazova. Nonlinear regression modeling on the base of Monte-Carlo method. Matematičeskoe modelirovanie, Tome 20 (2008) no. 4, pp. 78-86. http://geodesic.mathdoc.fr/item/MM_2008_20_4_a6/

[1] Sorokin O. D., Prikladnaya statistika na kompyutere, Sibirskoe otdelenie RAN, Novosibirsk, 2004

[2] Dreiper N., Smit T., Prikladnoi regressionnyi analiz, kn. 2, Finansy i statistika, M., 1987

[3] Ferster E., Rents B., Metody korrelyatsionnogo i regressionnogo analiza, Finansy i statistika, M., 1983

[4] Khimmelblau D., Analiz protsessov statisticheskimi metodami, Mir, M., 1973

[5] Ermakov S. M., Metod Monte-Karlo i smezhnye voprosy, Nauka, M., 1975 | MR | Zbl

[6] Analitis S., Methodik der Analyse von Epidemien dargestellt am Apfelschorf, Acta Phytomedica 1, Verlag Paul Parey, Berlin und Hamburg, 1973, 76 s

[7] Schrödter H., “Methodisches zur Bearbeitung phytometeoropathologischer Untersuchungen”, Journal of Phytopathology, 53:2, 154–173 | DOI

[8] Edwards T. I., Pearl R., Gould S. A., “Influence of temperature and nutrition on the growth and duration of life of Cucumis melo seedlings”, Botan. Gaielle, 96 (1934), 118–135 | DOI

[9] Pearl R., Edwards T. I., Miner J. R., “The growth of Cucumis melo seedlings at different temperatures”, Journ. Gen. Physiol., 17 (1934), 687–700 | DOI

[10] Rybasenko V. D., Rybasenko I. D., Elementarnye funktsii. Formuly, tablitsy, grafiki, Nauka, M., 1987 | Zbl