Analytic solution of single-phase Stefan problem
Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 77-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Authors found analytic solutions of Stefan problem with different boundary conditions on $x=0$ surface by means of the method of differential rows and the method of general integral transformation. They showed the equivalence of these solutions in a confluent domain, i.e. $y(0)=0$. Authors considered a few particular cases of general solutions in dimensionless variables and drew their graphs. Authors found coefficients of proportionality in the law of moving of a boundary in the tenth decimal place.
@article{MM_2008_20_3_a6,
     author = {\`E. M. Kartashov and G. S. Krotov},
     title = {Analytic solution of single-phase {Stefan} problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_3_a6/}
}
TY  - JOUR
AU  - È. M. Kartashov
AU  - G. S. Krotov
TI  - Analytic solution of single-phase Stefan problem
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 77
EP  - 86
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_3_a6/
LA  - ru
ID  - MM_2008_20_3_a6
ER  - 
%0 Journal Article
%A È. M. Kartashov
%A G. S. Krotov
%T Analytic solution of single-phase Stefan problem
%J Matematičeskoe modelirovanie
%D 2008
%P 77-86
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_3_a6/
%G ru
%F MM_2008_20_3_a6
È. M. Kartashov; G. S. Krotov. Analytic solution of single-phase Stefan problem. Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 77-86. http://geodesic.mathdoc.fr/item/MM_2008_20_3_a6/