Numerical modeling of strong nonlinear deformation problems in Euler coordinates
Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 17-28

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical solution of problem of strong nonlinear deformation using method of solution continuation with respect to a parameter is considered. Euler's coordinates are used. Numerical results demonstrate efficiency of the approach.
@article{MM_2008_20_3_a2,
     author = {M. S. Agapov and E. B. Kuznetsov and V. I. Shalashilin},
     title = {Numerical modeling of strong nonlinear deformation problems in {Euler} coordinates},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_3_a2/}
}
TY  - JOUR
AU  - M. S. Agapov
AU  - E. B. Kuznetsov
AU  - V. I. Shalashilin
TI  - Numerical modeling of strong nonlinear deformation problems in Euler coordinates
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 17
EP  - 28
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_3_a2/
LA  - ru
ID  - MM_2008_20_3_a2
ER  - 
%0 Journal Article
%A M. S. Agapov
%A E. B. Kuznetsov
%A V. I. Shalashilin
%T Numerical modeling of strong nonlinear deformation problems in Euler coordinates
%J Matematičeskoe modelirovanie
%D 2008
%P 17-28
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_3_a2/
%G ru
%F MM_2008_20_3_a2
M. S. Agapov; E. B. Kuznetsov; V. I. Shalashilin. Numerical modeling of strong nonlinear deformation problems in Euler coordinates. Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 17-28. http://geodesic.mathdoc.fr/item/MM_2008_20_3_a2/