Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_2_a8, author = {V. G. Grudnitskii}, title = {Sufficient conditions of stability in calculations of stationary supersonic flows by a marching method and non-stationary viscous flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {93--104}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_2_a8/} }
TY - JOUR AU - V. G. Grudnitskii TI - Sufficient conditions of stability in calculations of stationary supersonic flows by a marching method and non-stationary viscous flows JO - Matematičeskoe modelirovanie PY - 2008 SP - 93 EP - 104 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2008_20_2_a8/ LA - ru ID - MM_2008_20_2_a8 ER -
%0 Journal Article %A V. G. Grudnitskii %T Sufficient conditions of stability in calculations of stationary supersonic flows by a marching method and non-stationary viscous flows %J Matematičeskoe modelirovanie %D 2008 %P 93-104 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2008_20_2_a8/ %G ru %F MM_2008_20_2_a8
V. G. Grudnitskii. Sufficient conditions of stability in calculations of stationary supersonic flows by a marching method and non-stationary viscous flows. Matematičeskoe modelirovanie, Tome 20 (2008) no. 2, pp. 93-104. http://geodesic.mathdoc.fr/item/MM_2008_20_2_a8/
[1] V. G. Grudnitskii, “Obobschënnye kharakteristiki dlya sistemy uravnenii Eilera i ikh primenenie k konstruirovaniyu chislennykh skhem”, Matem. modelirovanie, 4:12 (1992), 45–48
[2] V. G. Grudnitskii, “Obobschënnye kharakteristiki dlya sistemy uravnenii Eilera”, Algoritmy dlya chislennogo issledovaniya razryvnykh techenii, VTs RAN, 1993, 191–203 | MR
[3] V. G. Grudnitskii, “Obobschënnye kharakteristiki i dostatochnoe uslovie ustoichivosti dlya uravnenii Eilera s razryvnymi resheniyami”, Matem. modelirovanie, 9:12 (1997), 121–125 | MR
[4] V. G. Grudnitskii, “Dostatochnoe uslovie ustoichivosti pri yavnom postroenii razryvnykh reshenii sistemy uravnenii Eilera”, DAN, 362:3 (1998), 298–299 | MR
[5] V. G. Grudnitskii, “Dostatochnoe uslovie ustoichivosti mnogomernogo raschëta nestatsionarnykh razryvnykh reshenii uravnenii Eilera”, Matem. modelirovanie, 12:1 (2000), 65–77 | MR
[6] V. G. Grudnitskii, P. V. Plotnikov, “Obobschënnye kharakteristiki i dostatochnoe uslovie ustoichivosti pri postroenii razryvnykh reshenii sistemy uravnenii Eilera”, Novoe v chislennom modelirovanii, 2000, 148–164 | MR
[7] V. G. Grudnitskiy, “Sufficient conditions of stability for discontinuous solutions of the Euler equations”, Computational Fluid Dynamics J., 10:2 (2001), 334–337
[8] V. G. Grudnitskii, “Pryamoi obobschënno-kharakteristicheskii metod dlya raschëta razryvnykh reshenii zakonov sokhraneniya gazovoi dinamiki”, Matem. modelirovanie, 16:1 (2004), 90–96 | Zbl
[9] V. G. Grudnitskii, “O dostatochnykh usloviyakh ustoichivosti dlya skhemy S. K. Godunova”, Matem. modelirovanie, 17:12 (2005), 119–128 | MR
[10] V. G. Grudnitskii, “Dostatochnye usloviya ustoichivosti pri raschëte razryvnykh reshenii nestatsionarnykh zakonov sokhraneniya v krivolineinykh koordinatakh i pri nalichii pravykh chastei”, Matem. modelirovanie, 18:10 (2006), 76–80
[11] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Com. Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl
[12] S. K. Godunov, “Raznostnyi metod raschëta udarnoi volny”, UMN, 12:1 (1957), 176–177 | MR | Zbl
[13] V. S. Ryabenkii, A. F. Filippov, Ob ustoichivosti raznostnykh uravnenii, Gostekhizdat, M., 1956