Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_2_a5, author = {B. N. Azarenok}, title = {On a method of conservative remapping on hexahedral meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--75}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_2_a5/} }
B. N. Azarenok. On a method of conservative remapping on hexahedral meshes. Matematičeskoe modelirovanie, Tome 20 (2008) no. 2, pp. 59-75. http://geodesic.mathdoc.fr/item/MM_2008_20_2_a5/
[1] J. K. Dukowicz, N. T. Padial, REMAP3D: A conservative three-dimensional remapping code, report, Los Alamos, 1991
[2] J. Grandy, “Conservative remapping and regions overlays by intersecting arbitrary polyhedra”, J. Comp. Phys., 148 (1999), 433–466 | DOI | MR | Zbl
[3] B. N. Azarenok, “Opisanie algoritma konservativnoi interpolyatsii gazodinamicheskikh polei na geksaedralnykh setkakh”, Itogovyi Otchet o NIR “Razrabotka algoritmov i programm postroeniya regulyarnykh trekhmernykh setok i interpolyatsii gazodinamicheskikh polei”, gl. 4, In-t Matematiki i Mekhaniki UrO RAN, Ekaterinburg, 2002, 71–108
[4] B. N. Azarenok, “Algoritm konservativnoi interpolyatsii gazodinamicheskikh polei na geksaedralnykh setkakh”, Itogovyi Otchet o NIR “Rasshirenie vozmozhnostei algoritmov i programm postroeniya regulyarnykh trekhmernykh setok i interpolyatsii gazodinamicheskikh polei”, gl. 4, In-t Matematiki i Mekhaniki UrO RAN, Ekaterinburg, 2003, 56–78
[5] B. N. Azarenok, Algoritm konservativnoi interpolyatsii na geksaedralnykh setkakh, VTs RAN, M., 2006, 58 pp. | MR
[6] O. V. Ushakova, “Usloviya nevyrozhdennosti trekhmernykh yacheek. Formula dlya ob'ema yacheek”, Zh. vychisl. matem. i matem. fiz., 41:6 (2001), 881–894 | MR | Zbl
[7] N. E. Kochin, Vektornoe ischislenie i nachala tenzornogo ischisleniya, Nauka, M., 1965 | Zbl
[8] J. K. Dukowicz, “Efficient volume computation for three-dimensional hexahedral cells”, J. Comp. Phys., 74 (1988), 493–496 | DOI | Zbl
[9] T. N. Bronina, I. A. Gasilova, O. V. Ushakova, “Algoritmy postroeniya trekhmernykh strukturirovannykh setok”, Zhurnal vychisl. matem. i matem. fiziki, 43:6 (2003), 875–883 | MR | Zbl
[10] B. N. Azarenok, Ob odnom variatsionnom metode postroeniya prostranstvennykh setok, VTs RAN, M., 2006, 51 pp. | MR
[11] B. N. Azarenok, “A variational hexahedral grid generator with control metric”, J. Comp. Phys., 218 (2006), 720–747 | DOI | MR | Zbl