On a method of conservative remapping on hexahedral meshes
Matematičeskoe modelirovanie, Tome 20 (2008) no. 2, pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of the conservative interpolation of physical parameters from the old structured hexahedral mesh to the new hexahedral mesh is considered. Conservative remapping is reduced to determining the volume of the overlapping figure between the old mesh cells and new mesh cells. The cell with the ruled faces is substituted for two dodecahedra with planar triangular faces. Thus, the interpolation is reduced to the problem of constructing the overlapping figure between two dodecahedra. For the underlying new mesh cell, the optimal algorithm of selecting the old mesh cells with nontrivial intersection is suggested. Interpolation error estimate is performed. Examples of remapping are presented.
@article{MM_2008_20_2_a5,
     author = {B. N. Azarenok},
     title = {On a method of conservative remapping on hexahedral meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_2_a5/}
}
TY  - JOUR
AU  - B. N. Azarenok
TI  - On a method of conservative remapping on hexahedral meshes
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 59
EP  - 75
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_2_a5/
LA  - ru
ID  - MM_2008_20_2_a5
ER  - 
%0 Journal Article
%A B. N. Azarenok
%T On a method of conservative remapping on hexahedral meshes
%J Matematičeskoe modelirovanie
%D 2008
%P 59-75
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_2_a5/
%G ru
%F MM_2008_20_2_a5
B. N. Azarenok. On a method of conservative remapping on hexahedral meshes. Matematičeskoe modelirovanie, Tome 20 (2008) no. 2, pp. 59-75. http://geodesic.mathdoc.fr/item/MM_2008_20_2_a5/

[1] J. K. Dukowicz, N. T. Padial, REMAP3D: A conservative three-dimensional remapping code, report, Los Alamos, 1991

[2] J. Grandy, “Conservative remapping and regions overlays by intersecting arbitrary polyhedra”, J. Comp. Phys., 148 (1999), 433–466 | DOI | MR | Zbl

[3] B. N. Azarenok, “Opisanie algoritma konservativnoi interpolyatsii gazodinamicheskikh polei na geksaedralnykh setkakh”, Itogovyi Otchet o NIR “Razrabotka algoritmov i programm postroeniya regulyarnykh trekhmernykh setok i interpolyatsii gazodinamicheskikh polei”, gl. 4, In-t Matematiki i Mekhaniki UrO RAN, Ekaterinburg, 2002, 71–108

[4] B. N. Azarenok, “Algoritm konservativnoi interpolyatsii gazodinamicheskikh polei na geksaedralnykh setkakh”, Itogovyi Otchet o NIR “Rasshirenie vozmozhnostei algoritmov i programm postroeniya regulyarnykh trekhmernykh setok i interpolyatsii gazodinamicheskikh polei”, gl. 4, In-t Matematiki i Mekhaniki UrO RAN, Ekaterinburg, 2003, 56–78

[5] B. N. Azarenok, Algoritm konservativnoi interpolyatsii na geksaedralnykh setkakh, VTs RAN, M., 2006, 58 pp. | MR

[6] O. V. Ushakova, “Usloviya nevyrozhdennosti trekhmernykh yacheek. Formula dlya ob'ema yacheek”, Zh. vychisl. matem. i matem. fiz., 41:6 (2001), 881–894 | MR | Zbl

[7] N. E. Kochin, Vektornoe ischislenie i nachala tenzornogo ischisleniya, Nauka, M., 1965 | Zbl

[8] J. K. Dukowicz, “Efficient volume computation for three-dimensional hexahedral cells”, J. Comp. Phys., 74 (1988), 493–496 | DOI | Zbl

[9] T. N. Bronina, I. A. Gasilova, O. V. Ushakova, “Algoritmy postroeniya trekhmernykh strukturirovannykh setok”, Zhurnal vychisl. matem. i matem. fiziki, 43:6 (2003), 875–883 | MR | Zbl

[10] B. N. Azarenok, Ob odnom variatsionnom metode postroeniya prostranstvennykh setok, VTs RAN, M., 2006, 51 pp. | MR

[11] B. N. Azarenok, “A variational hexahedral grid generator with control metric”, J. Comp. Phys., 218 (2006), 720–747 | DOI | MR | Zbl