On transition to balanced growth in a model of closed decentralized economy
Matematičeskoe modelirovanie, Tome 20 (2008) no. 2, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to investigate the mechanism of decision making such that a multisector decentralized economy can transit to balanced growth. The first variant of such mechanism based on the physical indicator of sales. The second one based on the maximization of expected profit. In the latter case the price depends on the volume of output. As it shown both variants solve the given task.
@article{MM_2008_20_2_a0,
     author = {A. p. Abramov},
     title = {On transition to balanced growth in a model of  closed decentralized economy},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_2_a0/}
}
TY  - JOUR
AU  - A. p. Abramov
TI  - On transition to balanced growth in a model of  closed decentralized economy
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 3
EP  - 12
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_2_a0/
LA  - ru
ID  - MM_2008_20_2_a0
ER  - 
%0 Journal Article
%A A. p. Abramov
%T On transition to balanced growth in a model of  closed decentralized economy
%J Matematičeskoe modelirovanie
%D 2008
%P 3-12
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_2_a0/
%G ru
%F MM_2008_20_2_a0
A. p. Abramov. On transition to balanced growth in a model of  closed decentralized economy. Matematičeskoe modelirovanie, Tome 20 (2008) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2008_20_2_a0/

[1] D. Geil, Teoriya lineinykh ekonomicheskikh modelei, IL, M., 1963, 420 pp.

[2] M. Morishima, Ravnovesie, ustoichivost, rost (Mnogootraslevoi analiz), Nauka, M., 1972, 280 pp.

[3] Kh. Nikaido, Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 520 pp.

[4] K. Lankaster, Matematicheskaya ekonomika, Sov. radio, M., 1972, 464 pp. | Zbl

[5] V. L. Makarov, A. M. Rubinov, Matematicheskaya teoriya ekonomicheskoi dinamiki i ravnovesiya, Nauka, M., 1973, 336 pp. | MR

[6] V. Z. Belenkii, A. D. Slastnikov, “Ravnovesnaya dinamika zamknutogo rynka monoproduktovykh proizvodstv”, Ekonomika i matematicheskie metody, 30:4 (1994), 112–128

[7] D. Geil, “Zamknutaya lineinaya model proizvodstva”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 382–400

[8] B. S. Razumikhin, “Zadacha o vykhode ekonomiki na magistral sbalansirovannogo rosta”, Avtomatika i telemekhanika, 1974, no. 9, 119–123 | MR | Zbl

[9] A. P. Abramov, “Magistralnyi rezhim, tseny i khozyaistvennaya avtonomiya”, Ekonomika i matematicheskie metody, 42:2 (2006), 93–103 | Zbl

[10] Yu. P. Ivanilov, A. V. Lotov, Matematicheskie modeli v ekonomike, Nauka, M., 1979, 304 pp.

[11] G. B. Kleiner, Proizvodstvennye funktsii: Teoriya, metody, primenenie, Finansy i statistika, M., 1986, 240 pp. | MR | Zbl

[12] A. G. Granberg, Dinamicheskie modeli narodnogo khozyaistva, Ekonomika, M., 1985

[13] P. Kheine, Ekonomicheskii obraz myshleniya, Novosti, M., 1991, 704 pp.

[14] S. A. Ashmanov, Vedenie v matematicheskuyu ekonomiku, Nauka, M., 1984, 294 pp. | MR | Zbl

[15] B. Grodal, “The Equivalence Principle”, Optimization and Operation Research, Encyclopedia of Life Support Systems (EOLSS), ed. Ulrich Derigs, Cologne, 2002, 707–723