Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_2_a0, author = {A. p. Abramov}, title = {On transition to balanced growth in a model of closed decentralized economy}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--12}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_2_a0/} }
A. p. Abramov. On transition to balanced growth in a model of closed decentralized economy. Matematičeskoe modelirovanie, Tome 20 (2008) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2008_20_2_a0/
[1] D. Geil, Teoriya lineinykh ekonomicheskikh modelei, IL, M., 1963, 420 pp.
[2] M. Morishima, Ravnovesie, ustoichivost, rost (Mnogootraslevoi analiz), Nauka, M., 1972, 280 pp.
[3] Kh. Nikaido, Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 520 pp.
[4] K. Lankaster, Matematicheskaya ekonomika, Sov. radio, M., 1972, 464 pp. | Zbl
[5] V. L. Makarov, A. M. Rubinov, Matematicheskaya teoriya ekonomicheskoi dinamiki i ravnovesiya, Nauka, M., 1973, 336 pp. | MR
[6] V. Z. Belenkii, A. D. Slastnikov, “Ravnovesnaya dinamika zamknutogo rynka monoproduktovykh proizvodstv”, Ekonomika i matematicheskie metody, 30:4 (1994), 112–128
[7] D. Geil, “Zamknutaya lineinaya model proizvodstva”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 382–400
[8] B. S. Razumikhin, “Zadacha o vykhode ekonomiki na magistral sbalansirovannogo rosta”, Avtomatika i telemekhanika, 1974, no. 9, 119–123 | MR | Zbl
[9] A. P. Abramov, “Magistralnyi rezhim, tseny i khozyaistvennaya avtonomiya”, Ekonomika i matematicheskie metody, 42:2 (2006), 93–103 | Zbl
[10] Yu. P. Ivanilov, A. V. Lotov, Matematicheskie modeli v ekonomike, Nauka, M., 1979, 304 pp.
[11] G. B. Kleiner, Proizvodstvennye funktsii: Teoriya, metody, primenenie, Finansy i statistika, M., 1986, 240 pp. | MR | Zbl
[12] A. G. Granberg, Dinamicheskie modeli narodnogo khozyaistva, Ekonomika, M., 1985
[13] P. Kheine, Ekonomicheskii obraz myshleniya, Novosti, M., 1991, 704 pp.
[14] S. A. Ashmanov, Vedenie v matematicheskuyu ekonomiku, Nauka, M., 1984, 294 pp. | MR | Zbl
[15] B. Grodal, “The Equivalence Principle”, Optimization and Operation Research, Encyclopedia of Life Support Systems (EOLSS), ed. Ulrich Derigs, Cologne, 2002, 707–723