On the exponential integral computation
Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 87-91
Cet article a éte moissonné depuis la source Math-Net.Ru
New high-precision algorithm for exponential integral calculation was developed. It is based on the representation of exponential integral in form of convergent series when $x$-argument is not large and in form of asymptotically convergent continued fraction when $x$ is large. It was shown that the optimal bound between these representations is $x=1$. At the same time using of 18 series members and 220 continued fraction members guarantees relative pre-cision lower than $2\cdot 10^{-15}$, that exceeds practical needs.
@article{MM_2008_20_1_a6,
author = {N. N. Kalitkin and I. A. Panin},
title = {On the exponential integral computation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {87--91},
year = {2008},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a6/}
}
N. N. Kalitkin; I. A. Panin. On the exponential integral computation. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 87-91. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a6/
[1] E. S. Kuznetsov, Izbrannye nauchnye trudy, FIZMATLIT, M., 2003
[2] M. Abramowitz, I. A. Stegun (ed.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, John Wiley Sons, New York, 1972 | MR | Zbl
[3] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, Izdatelstvo inostrannoi literatury, M., 1960 | MR