Rarefaction shock waves in gas dynamics numerical solutions
Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 48-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of various gas dynamics difference schemes (conservative, nonconsevative and completely conservative) are investigated on the basis of a classical moving piston problem. It's shown that shock wave can appears in rarefaction wave solution for piston moving out of gas. Shocks appear when low stability schemes are used for these tasks. Explanation of this effect and possible ways of its elimination are proposed.
@article{MM_2008_20_1_a3,
     author = {M. V. Abakumov and S. I. Mukhin and Yu. P. Popov and D. V. Rogozhkin},
     title = {Rarefaction shock waves in gas dynamics numerical solutions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--60},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/}
}
TY  - JOUR
AU  - M. V. Abakumov
AU  - S. I. Mukhin
AU  - Yu. P. Popov
AU  - D. V. Rogozhkin
TI  - Rarefaction shock waves in gas dynamics numerical solutions
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 48
EP  - 60
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/
LA  - ru
ID  - MM_2008_20_1_a3
ER  - 
%0 Journal Article
%A M. V. Abakumov
%A S. I. Mukhin
%A Yu. P. Popov
%A D. V. Rogozhkin
%T Rarefaction shock waves in gas dynamics numerical solutions
%J Matematičeskoe modelirovanie
%D 2008
%P 48-60
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/
%G ru
%F MM_2008_20_1_a3
M. V. Abakumov; S. I. Mukhin; Yu. P. Popov; D. V. Rogozhkin. Rarefaction shock waves in gas dynamics numerical solutions. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 48-60. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Popov Yu. P., Samarskii A. A., “Polnostyu konservativnye raznostnye skhemy”, ZhVM i MF, 9:4 (1969), 953–958 | MR | Zbl

[3] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[4] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, ZhVM i MF, 1:1 (1961), 5–63 | MR | Zbl

[5] Kuznetsov O. A., Chislennoe issledovanie skhemy Rou s modifikatsiei Einfeldta dlya uravnenii gazovoi dinamiki, Preprint, IPM AN SSSR, M., 1998

[6] Abakumov M. V., Issledovanie i modifikatsiya raznostnykh skhem metoda krupnykh chastits, Preprint, IPM RAN, M., 1998

[7] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988

[8] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Fizmatgiz, M., 1962

[9] Troschiev V. E., “O divergentnosti skhemy “krest” chislennogo resheniya uravnenii gazovoi dinamiki”, Chislennye metody mekhaniki sploshnoi sredy, 1, no. 5, Nauka, Novosibirsk, 1970, 87–93

[10] Davydov Yu. M., “Primenenie metoda differentsialnogo priblizheniya dlya issledovaniya i postroeniya nelineinykh raznostnykh skhem”, ChM MSS, 11, no. 4, Novosibirsk, 1980, 41–59 | MR

[11] Shokin Yu. I., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1979 | MR

[12] Mukhin S. I., Popov S. B., Popov Yu. P., “O raznostnykh skhemakh s iskusstvennoi dispersiei”, ZhVM i MF, 23:6 (1983), 1355–1363 | MR | Zbl

[13] Davydov Yu. M., Skotnikov V. P., Differentsialnye priblizheniya raznostnykh skhem, VTs AN SSSR, M., 1978 | MR

[14] Ivanov M. Ya., Koretskii V. V., Kurochkina N. Ya., “Issledovanie svoistv raznostnykh skhem skvoznogo scheta vtorogo poryadka approksimatsii”, ChM MSS, 11, no. 2, Novosibirsk, 1980, 41–63 | MR

[15] Ardelyan N. V., Gulin A. V., K obosnovaniyu ustoichivosti raznostnykh skhem dlya uravnenii akustiki, Preprint No 96, IPM AN SSSR, M., 1978 | MR

[16] Gelfand I. M., “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2(86) (1959), 87–158 | MR