Rarefaction shock waves in gas dynamics numerical solutions
Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 48-60

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of various gas dynamics difference schemes (conservative, nonconsevative and completely conservative) are investigated on the basis of a classical moving piston problem. It's shown that shock wave can appears in rarefaction wave solution for piston moving out of gas. Shocks appear when low stability schemes are used for these tasks. Explanation of this effect and possible ways of its elimination are proposed.
@article{MM_2008_20_1_a3,
     author = {M. V. Abakumov and S. I. Mukhin and Yu. P. Popov and D. V. Rogozhkin},
     title = {Rarefaction shock waves in gas dynamics numerical solutions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--60},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/}
}
TY  - JOUR
AU  - M. V. Abakumov
AU  - S. I. Mukhin
AU  - Yu. P. Popov
AU  - D. V. Rogozhkin
TI  - Rarefaction shock waves in gas dynamics numerical solutions
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 48
EP  - 60
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/
LA  - ru
ID  - MM_2008_20_1_a3
ER  - 
%0 Journal Article
%A M. V. Abakumov
%A S. I. Mukhin
%A Yu. P. Popov
%A D. V. Rogozhkin
%T Rarefaction shock waves in gas dynamics numerical solutions
%J Matematičeskoe modelirovanie
%D 2008
%P 48-60
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/
%G ru
%F MM_2008_20_1_a3
M. V. Abakumov; S. I. Mukhin; Yu. P. Popov; D. V. Rogozhkin. Rarefaction shock waves in gas dynamics numerical solutions. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 48-60. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a3/