Modelling of Lyapunov stability based on processing of the difference solutions of ordinary difference equations
Matematičeskoe modelirovanie, Tome 20 (2008) no. 12, pp. 105-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The schemes for computer analysis of solution stability of ordinary differential equations systems are presented. The schemes are based on difference solutions transformations that are made simultaneously with stability assessment real-time. In general case the transformation of the second member function isn't performed, characteristic quantity calculations are not required for linear systems, in the case of matrix of constant coefficients the information about characteristic polynomial and its roots isn't used.
@article{MM_2008_20_12_a7,
     author = {Ya. E. Romm},
     title = {Modelling of {Lyapunov} stability based on processing of the difference solutions of ordinary difference equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--118},
     publisher = {mathdoc},
     volume = {20},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_12_a7/}
}
TY  - JOUR
AU  - Ya. E. Romm
TI  - Modelling of Lyapunov stability based on processing of the difference solutions of ordinary difference equations
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 105
EP  - 118
VL  - 20
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_12_a7/
LA  - ru
ID  - MM_2008_20_12_a7
ER  - 
%0 Journal Article
%A Ya. E. Romm
%T Modelling of Lyapunov stability based on processing of the difference solutions of ordinary difference equations
%J Matematičeskoe modelirovanie
%D 2008
%P 105-118
%V 20
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_12_a7/
%G ru
%F MM_2008_20_12_a7
Ya. E. Romm. Modelling of Lyapunov stability based on processing of the difference solutions of ordinary difference equations. Matematičeskoe modelirovanie, Tome 20 (2008) no. 12, pp. 105-118. http://geodesic.mathdoc.fr/item/MM_2008_20_12_a7/

[1] Romm Ya. E., “Parallelnye iteratsionnye skhemy lineinoi algebry s prilozheniem k analizu ustoichivosti reshenii sistem lineinykh differentsialnykh uravnenii”, Kibernetika i sistemnyi analiz, 2004, no. 4, 119–142 | MR | Zbl

[2] Romm Ya. E., “Multiplikativnye kriterii ustoichivosti na osnove raznostnykh reshenii obyknovennykh differentsialnykh uravnenii”, Kibernetika i sistemnyi analiz, 2006, no. 1, 127–142 | MR | Zbl

[3] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964, 478 pp.

[4] Romm Ya. E., Programmiruemye kriterii ustoichivosti po Lyapunovu. II, DEP v VINITI 21.06.2005, No 880–V2005, TGPI, Taganrog, 2005, 26 pp.

[5] Babushka I., Vitasek E., Prager M., Chislennye protsessy resheniya differentsialnykh uravnenii, Mir, M., 1969, 368 pp. | MR | Zbl

[6] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 2, Fizmatgiz, M., 1962, 640 pp.

[7] Romm Ya. E., Bulanov S. G., “Programmnye kriterii ustoichivosti resheniya zadachi Koshi dlya sistem lineinykh differentsialnykh uravnenii na osnove raznostnykh skhem chislennogo integrirovaniya”, Matematicheskoe modelirovanie i kompyuternye tekhnologii, Izvestiya vuzov. Severo-Kavkazskii region. Tekhnicheskie nauki, Spetsialnyi vypusk, 2004, 75–80

[8] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo MGU, M., 1998, 480 pp. | MR

[9] Katrich S. A., Razrabotka i issledovanie programmnogo modelirovaniya ustoichivosti reshenii nelineinykh differentsialnykh uravnenii na osnove raznostnykh metodov, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kand. tekhn. nauk, Izd-vo TRTU, Taganrog, 2006, 20 pp.

[10] Uilkinson D. Kh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970, 564 pp.

[11] Romm Ya. E., “Lokalizatsiya i ustoichivoe vychislenie nulei mnogochlena na osnove sortirovki. I”, Kibernetika i sistemnyi analiz, 2007, no. 1, 165–182 | MR | Zbl

[12] Romm Ya. E., “Lokalizatsiya i ustoichivoe vychislenie nulei mnogochlena na osnove sortirovki. II”, Kibernetika i sistemnyi analiz, 2007, no. 2, 161–174 | MR | Zbl

[13] Zaika I. V., Razrabotka i issledovanie skhem optimizatsii na osnove algoritmov sortirovki s prilozheniem k identifikatsii ekstremumov reshenii differentsialnykh uravnenii, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kand. tekhn. nauk, Izd-vo TRTU, Taganrog, 2007, 19 pp.

[14] Bulanov S. G., Razrabotka i issledovanie metodov programmnogo modelirovaniya ustoichivosti sistem lineinykh differentsialnykh uravnenii na osnove matrichnykh multiplikativnykh preobrazovanii raznostnykh skhem, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kand. tekhn. nauk, Izd-vo TRTU, Taganrog, 2006, 20 pp.

[15] Markeev A. P., Sokolskii A. G., Nekotorye vychislitelnye algoritmy normalizatsii gamiltonovykh sistem, preprint No 31, IPM AN SSSR, M., 1976, 61 pp.

[16] Dekker K., Verver Ya., Ustoichivost metodov Runge-Kutta dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988, 223 pp. | MR

[17] Zubov V. I., “Konservativnye chislennye metody integrirovaniya differentsialnykh uravnenii v nelineinoi mekhanike”, Dokl. RAN, 354:4 (1997), 446–448 | MR | Zbl

[18] Aleksandrov A. Yu., Zhabko A. P., “Ob ustoichivosti reshenii odnogo klassa nelineinykh raznostnykh sistem”, Sibirskii matematicheskii zhurnal, 44:6 (2003), 1217–1225 | MR | Zbl