Employment of the modification Everhart's method for solution of problems of celestial mechanics
Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 109-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modification Everhart's method of high order for solver of differential equation in problems of celestial mechanics is ordered. In the examples of solution system of differential equations, which circumscribe the motion of the lager planets and small of bodies Sun's system, the investigation the method's effectiveness is carried.
@article{MM_2008_20_11_a9,
     author = {A. F. Zausaev and A. A. Zausaev},
     title = {Employment of the modification {Everhart's} method for solution of problems of celestial mechanics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {20},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_11_a9/}
}
TY  - JOUR
AU  - A. F. Zausaev
AU  - A. A. Zausaev
TI  - Employment of the modification Everhart's method for solution of problems of celestial mechanics
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 109
EP  - 114
VL  - 20
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_11_a9/
LA  - ru
ID  - MM_2008_20_11_a9
ER  - 
%0 Journal Article
%A A. F. Zausaev
%A A. A. Zausaev
%T Employment of the modification Everhart's method for solution of problems of celestial mechanics
%J Matematičeskoe modelirovanie
%D 2008
%P 109-114
%V 20
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_11_a9/
%G ru
%F MM_2008_20_11_a9
A. F. Zausaev; A. A. Zausaev. Employment of the modification Everhart's method for solution of problems of celestial mechanics. Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 109-114. http://geodesic.mathdoc.fr/item/MM_2008_20_11_a9/

[1] X. X. Newhall, E. M. Standish, Jr, J. G. Williams, “DE 102: A numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. Astrophys., 125 (1983), 150–167 | Zbl

[2] E. Everhart, “Implicit single methods for integrating orbits”, Central Mechanics, 10 (1974), 35–55 | MR | Zbl

[3] T. V. Bordovitsina, Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki, Nauka, M., 1984, 136 pp. | MR

[4] D. Kholl, D. Uatt, Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979, 312 pp.

[5] A. F. Zausaev, A. A. Zausaev, A. G. Olkhin, “Otsenka tochnosti metoda Everkharta pri reshenii uravnenii dvizheniya bolshikh planet na intervale vremeni 10 000 let”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 30 (2004), 108–113

[6] E. M. Standish, JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Prop Lab Technical Report. IOM 312, F-048, 1998, 1–7

[7] A. F. Zausaev, A. A. Zausaev, Katalog orbitalnoi evolyutsii korotkoperiodicheskikh komet s 1900 po 2100 gg., Mashinostroenie, M., 2005, 346 pp.