Low-cost calculation of multigroup neutron transport equations for time-to-time recalculation of averaged over spectrum cross-sections
Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methodology for multigroup neutron transport equation calculation for 2D r-z geometry on the basis of quasi-diffusion method is described. The application of quasi-diffusion method for solving eigenvalues problem of neutron transport leads to essential decreasing of needed amount of source iterations with simultaneous increasing of the accuracy. Results for determining of parameters of active zone of uranium-plutonium fast reactor of BN-800 type which can operate in self-adjustable mode are posted.
@article{MM_2008_20_11_a3,
     author = {E. N. Aristova and V. Ya. Gol'din},
     title = {Low-cost calculation of multigroup neutron transport equations for time-to-time recalculation of averaged over spectrum cross-sections},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {20},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_11_a3/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - V. Ya. Gol'din
TI  - Low-cost calculation of multigroup neutron transport equations for time-to-time recalculation of averaged over spectrum cross-sections
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 41
EP  - 54
VL  - 20
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_11_a3/
LA  - ru
ID  - MM_2008_20_11_a3
ER  - 
%0 Journal Article
%A E. N. Aristova
%A V. Ya. Gol'din
%T Low-cost calculation of multigroup neutron transport equations for time-to-time recalculation of averaged over spectrum cross-sections
%J Matematičeskoe modelirovanie
%D 2008
%P 41-54
%V 20
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_11_a3/
%G ru
%F MM_2008_20_11_a3
E. N. Aristova; V. Ya. Gol'din. Low-cost calculation of multigroup neutron transport equations for time-to-time recalculation of averaged over spectrum cross-sections. Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 41-54. http://geodesic.mathdoc.fr/item/MM_2008_20_11_a3/

[1] Feoktistov L. P., Analiz odnoi kontseptsii fizicheski bezopasnogo reaktora, Preprint IAE-4605/4, 1988

[2] Feoktistov L. P., “Bezopasnost – klyuchevoi moment vozrozhdeniya yadernoi energetiki”, Uspekhi fiz. nauk, 1993, no. 8, 89–102

[3] Goldin V. Ya., Anistratov D. Yu., “Reaktor na bystrykh neitronakh v samoreguliruemom neitronno-yadernom rezhime”, Matem. modelirovanie, 7:10 (1995), 12–32 | MR

[4] Goldin V. Ya., Troschiev Yu. V., Pestryakova G. A., “Ob upravlenii reaktorom na bystrykh neitronakh v samoreguliruemom rezhime 2-go roda”, Dokl. RAN, 369:2 (1999), 170–172 | MR

[5] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., Aristova E. N., “Samoreguliruemyi neitronno-yadernyi rezhim v reaktore s zhestkim spektrom i karbidnym toplivom”, Matem. modelirovanie, 14:1 (2002), 27–40

[6] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., “Usovershenstvovanie matematicheskoi modeli samoreguliruemogo reaktora”, Matem. modelirovanie, 14:12 (2002), 39–47

[7] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., Aristova E. N., “Bystryi reaktor na oksidnom uran-plutonievom toplive v samoreguliruemom rezhime”, Atomnaya energiya, 94:3 (2003), 184–190

[8] Goldin V. Ya., Pestryakova G. A., Troschiev Yu. V., “Upravlenie bystrym reaktorom s oksidnym uran-plutonievym toplivom v samoreguliruemom rezhime bez zapasa reaktivnosti”, Atomnaya energiya, 97:1 (2004), 3–9 | MR

[9] Goldin V. Ya., Troschiev Yu. V., “Upravlenie moschnostyu bystrogo reaktora v samoreguliruemom rezhime i ego pusk”, Atomnaya energiya, 98:1 (2005), 18–24

[10] Aristova E. N., Goldin V. Ya., “Raschet uravneniya perenosa neitronov sovmestno s uravneniyami kvazidiffuzii v $r-z$-geometrii”, Matem. modelirovanie, 18:11 (2006), 61–66 | MR | Zbl

[11] Nikolaev M. N., Tsibulya A. M., Tsikunov A. G. i dr., Kompleks programm CONSYST/ABBN – podgotovka konstant BNAB k raschetam reaktorov i zaschity, Otchet GNTs RF FEI No 9865, 1998

[12] Marchuk G. I., Metody rascheta yadernykh reaktorov, Gosatomizdat, 1961

[13] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiziki, 4:6 (1964), 1078–1087 | MR

[14] Aristova E. N., Goldin V. Ya., “Metod ucheta silnoi anizotropii rasseyaniya v uravnenii perenosa”, Matem. modelirovanie, 9:6 (1997), 39–52 | MR | Zbl

[15] Aristova E. N., Gol'din V. Ya., “Computation of anisotropy scattering of solar radiation in atmosphere (monoe-nergetic case)”, J. of Quantitative Spectroscopy Radiative Transfer, 67 (2000), 139–157 | DOI

[16] Marvin L. Adams, Edward W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[17] Aristova E. N., Baidin D. F., Goldin V. Ya., “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matem. modelirovanie, 18:7 (2006), 43–52 | MR | Zbl

[18] Aristova E. N., Kolpakov A. V., “Kombinirovannaya raznostnaya skhema dlya approksimatsii ellipticheskogo operatora na kosougolnoi yacheike”, Matem. modelirovanie, 3:4 (1991), 93–102 | MR

[19] Aristova E. N., Goldin V. Ya., Kolpakov A. V., “Metodika rascheta perenosa izlucheniya v tele vrascheniya”, Matem. modelirovanie, 9:3 (1997), 91–108 | MR | Zbl

[20] Aristova E. N., Goldin V. Ya., “Nelineinoe uskorenie iteratsii resheniya ellipticheskikh sistem uravnenii”, Matem. modelirovanie, 13:9 (2001), 82–90 | MR | Zbl

[21] Goldin V. Ya., “O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom”, Sovremennye problemy matem. fiziki i vychisl. matem., Nauka, M., 1982, 113–127 | MR

[22] Kazachkovskii O. D., Eliseev V. A., Matveev V. I. i dr., “Perspektivy ispolzovaniya smeshannogo oksidnogo topliva v bystrykh reaktorakh s natrievym okhlazhdeniem”, Atomnaya energiya, 96:5 (2004), 361–366