The numerical solution of the inverse problem for the deformable porous fractured reservoir
Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 35-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the given work the computing algorithm on the basis of regularization methods for an estimation of fracture permeability in the oil reservoir is suggested. The mathematical model of the filtration process in a porous fractured media takes into consideration the dependence of fracture permeability on pressure. As source information the well test data are used.
@article{MM_2008_20_11_a2,
     author = {M. H. Khairullin and A. I. Abdullin and P. E. Morozov and M. N. Shamsiev},
     title = {The numerical solution of the inverse problem for the deformable porous fractured reservoir},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--40},
     publisher = {mathdoc},
     volume = {20},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_11_a2/}
}
TY  - JOUR
AU  - M. H. Khairullin
AU  - A. I. Abdullin
AU  - P. E. Morozov
AU  - M. N. Shamsiev
TI  - The numerical solution of the inverse problem for the deformable porous fractured reservoir
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 35
EP  - 40
VL  - 20
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_11_a2/
LA  - ru
ID  - MM_2008_20_11_a2
ER  - 
%0 Journal Article
%A M. H. Khairullin
%A A. I. Abdullin
%A P. E. Morozov
%A M. N. Shamsiev
%T The numerical solution of the inverse problem for the deformable porous fractured reservoir
%J Matematičeskoe modelirovanie
%D 2008
%P 35-40
%V 20
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_11_a2/
%G ru
%F MM_2008_20_11_a2
M. H. Khairullin; A. I. Abdullin; P. E. Morozov; M. N. Shamsiev. The numerical solution of the inverse problem for the deformable porous fractured reservoir. Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 35-40. http://geodesic.mathdoc.fr/item/MM_2008_20_11_a2/

[1] Nikolaevskii V. N., Basniev K. S., Gorbunov A. T., Zotov G. A., Mekhanika nasyschennykh poristykh sred, Nedra, M., 1970, 335 pp.

[2] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988, 286 pp. | MR | Zbl

[3] Vabischevich P. N., Denisenko A. Yu., “Chislennoe reshenie koeffitsientnoi obratnoi zadachi dlya nelineinogo parabolicheskogo uravneniya”, Matem. modelirovanie, 1:8 (1989), 116–126 | MR | Zbl

[4] Morozov V. A., Goldman N. L., Malyshev V. A., “Metod deskriptivnoi regulyarizatsii v obratnykh zadachakh”, IFZh, 65:6 (1993), 695–702

[5] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990, 230 pp. | MR

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 611 pp. | MR | Zbl

[7] Van Everdingen A. F., Hurst W., “The application of the Laplace transformation to flow problems in reservoirs”, Trans. Amer. Inst. Min. Met. Eng., 186 (1949), 305–324

[8] Ban A., Bogomolova A. F., Maksimov V. A. i dr., Vliyanie svoistv gornykh porod na dvizhenie v nikh zhidkostei, Gostekhizdat, M., 1962, 271 pp.

[9] Khairullin M. Kh., Khisamov R. S., Shamsiev M. N., Farkhullin R. G., Interpretatsiya rezultatov gidrodinamicheskikh issledovanii skvazhin metodami regulyarizatsii, NITs “Regulyarnaya i khaoticheskaya dinamika”; Institut kompyuternykh issledovanii, M.–Izhevsk, 2006, 172 pp.