The difference schemes of higher order accuracy for numerical solution of the stiff first order ordinary differential equation with linear coefficients
Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 94-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The family of a new implicit economic one-step difference schemes from the second to fifth order of accuracy for numerical solution of the first order stiff ordinary differential equation with linear coefficients are proposed. The construction of schemes is based on using the increased accuracy Taylor expansion of desired function in the vicinity of the solution and the direct integration of the differential equation. The simplified variants and the asymptotic of schemes are considered. Good practical convergence of numerical results to exact solutions is shown on test examples at a rough step of integration, including a small parameter at a derivative. Comparison of different schemes efficiency with other known one-step methods is carried out.
@article{MM_2007_19_9_a6,
     author = {V. G. Zverev},
     title = {The difference schemes of higher order accuracy for numerical solution of the stiff first order ordinary differential equation with linear coefficients},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {94--104},
     publisher = {mathdoc},
     volume = {19},
     number = {9},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_9_a6/}
}
TY  - JOUR
AU  - V. G. Zverev
TI  - The difference schemes of higher order accuracy for numerical solution of the stiff first order ordinary differential equation with linear coefficients
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 94
EP  - 104
VL  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_9_a6/
LA  - ru
ID  - MM_2007_19_9_a6
ER  - 
%0 Journal Article
%A V. G. Zverev
%T The difference schemes of higher order accuracy for numerical solution of the stiff first order ordinary differential equation with linear coefficients
%J Matematičeskoe modelirovanie
%D 2007
%P 94-104
%V 19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_9_a6/
%G ru
%F MM_2007_19_9_a6
V. G. Zverev. The difference schemes of higher order accuracy for numerical solution of the stiff first order ordinary differential equation with linear coefficients. Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 94-104. http://geodesic.mathdoc.fr/item/MM_2007_19_9_a6/

[1] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[2] Bakhvalov Ya. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[3] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR

[4] Rakitskii Yu. V., Ustinov S. M., Chernorutskii I. T., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR | Zbl

[5] Kakhaner D., Mouler K., Nesh S., Chislennye metody i matematicheskoe obespechenie, Mir, M., 1998

[6] Evseev G. A., Kalyuzhnyp V. V., “Ekonomichnyi metod chislennogo integrirovaniya uravnenii khimicheskoi kinetiki”, Chislennye metody mekhaniki sploshnoi sredy, 5, no. 3, Nauka, Novosibirsk, 1974, 21–28

[7] Artemev S. S., Demidov G. V., “Chislennye metody vysokogo poryadka tochnosti dlya resheniya zhestkikh sistem”, Matematicheskie problemy khimii, ch. 1, VTs SO AN SSSR, Novosibirsk, 1975, 20–26

[8] Kraiko A. N., Nigmatulin R. I., Starkov V. K. i dr., “Mekhanika mnogofaznykh sred”, Itogi nauki i tekhniki. Gidromekhanika, no. 6, VINITI, M., 1972, 93–174

[9] Pirumov U. G., Roslyakov G. S., Gazovaya dinamika sopel, Nauka, M., 1990

[10] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[11] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[12] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[13] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[14] Bakhvalov S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i matem. fiziki, 9:4 (1969), 841–859 | Zbl

[15] Bagaev B. M., Shaidurov V. V., Setochnye metody resheniya zadach s pogranichnym sloem. Ch. 1, Nauka, Novosibirsk, 1998 | MR | Zbl

[16] Shishkin G. I., Setochnaya approksimatsiya singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, RAN UO, Ekaterinburg, 1992 | MR

[17] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999

[18] Hairer E., Wanner G., Solving ordinary differential equations II: Stiff and differential-algebraic problems, Springer-Verlag, Berlin, 1991 | MR | Zbl

[19] Roos H. G., Stynes M., Tobiska L., Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 1996 | MR

[20] Titov V. A., Shishkin G. I., “Chislennoe reshenie zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s malym parametrom pri proizvodnoi”, Chislennye metody mekhaniki sploshnoi sredy, 9, no. 7, Nauka, Novosibirsk, 1978, 112–121 | MR

[21] Boglaev I. P., “O chislennom integrirovanii singulyarno vozmuschennoi zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya”, ZhVM i MF, 25:7 (1985), 1009–1022 | MR | Zbl

[22] Vasenin I. M., Arkhipov V. A., Butov V. T., Glazunov A. A., Trofimov V. F., Gazovaya dinamika dvukhfaznykh techenii v soplakh, Izd-vo Tom. un-ta, Tomsk, 1986

[23] Rychkov A. D., Matematicheskoe modelirovanie gazodinamicheskikh protsessov v kanalakh i soplakh, Nauka, Novosibirsk, 1988 | MR | Zbl

[24] Zverev V. G., “Raznostnaya skhema tretego poryadka tochnosti dlya resheniya zhestkogo obyknovennogo differentsialnogo uravneniya s lineinymi koeffitsientami”, Vychislitelnye tekhnologii, 11:2 (2006), 28–38

[25] Zverev V. G., “O chislennom reshenii singulyarno vozmuschennoi zadachi Koshi dlya differentsialnogo uravneniya pervogo poryadka”, Vychislitelnaya gidrodinamika, 1999, 73–82, Izd. Tom. un-ta, Tomsk

[26] Zverev V. G., Goldin V. D., “Ob odnoi raznostnoi skheme dlya resheniya obyknovennogo differentsialnogo uravneniya pervogo poryadka s malym parametrom pri proizvodnoi”, Sopryazhennye zadachi mekhaniki i ekologii, Izd-vo Tom. un-ta, Tomsk, 2000, 166–174