Finite-difference algorithm for solving two-dimensional quasi-stationary electromagnetic problems with moving transmitter
Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 79-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of calculating the electromagnetic field in and nearby the metal pipe walls in the cylindrical coordinate system. Transmitter with low-frequency exciting current is slowly moved along the axis. The quasistationary approximation is used to model the field. We propose a second-order finite difference algorithm with exact non-uniform boundary conditions on the open boundaries of the computational domain in axial direction. The matrix sweep method is used to solve a given problem with multiple right-hand sides generated by the transmitter. Numerical tests to demonstrate efficiency of the proposed method is describe.
@article{MM_2007_19_9_a5,
     author = {N. A. Zaitsev and I. L. Sofronov},
     title = {Finite-difference algorithm for solving two-dimensional quasi-stationary electromagnetic problems with moving transmitter},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {19},
     number = {9},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_9_a5/}
}
TY  - JOUR
AU  - N. A. Zaitsev
AU  - I. L. Sofronov
TI  - Finite-difference algorithm for solving two-dimensional quasi-stationary electromagnetic problems with moving transmitter
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 79
EP  - 93
VL  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_9_a5/
LA  - ru
ID  - MM_2007_19_9_a5
ER  - 
%0 Journal Article
%A N. A. Zaitsev
%A I. L. Sofronov
%T Finite-difference algorithm for solving two-dimensional quasi-stationary electromagnetic problems with moving transmitter
%J Matematičeskoe modelirovanie
%D 2007
%P 79-93
%V 19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_9_a5/
%G ru
%F MM_2007_19_9_a5
N. A. Zaitsev; I. L. Sofronov. Finite-difference algorithm for solving two-dimensional quasi-stationary electromagnetic problems with moving transmitter. Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 79-93. http://geodesic.mathdoc.fr/item/MM_2007_19_9_a5/

[1] V. G. Gerasimov i dr., Nerazrushayuschii kontrol kachestva izdelii elektromagnitnym metodom, Energiya, M., 1978

[2] M. N. Mikheev, E. S. Gorkunov, Magnitnye metody strukturnogo analiza i nerazrushayuschego kontrolya, Nauka, M., 1993

[3] V. V. Sukhorukov (red.), Nerazrushayuschii kontrol. Kn. 3. Elektromagnitnyi kontrol, Vysshaya shkola, M., 1993

[4] A. N. Tikhonov, V. I. Dmitriev, E. V. Zakharov, “Matematicheskie modeli v elektromagnitnykh metodakh geofiziki i ikh chislennyi analiz”, Problemy vychislitelnoi matematiki, Izd-vo MGU, M., 1980, 40–81 | MR

[5] V. I. Dmitriev, E. V. Zakharov, Integralnye uravneniya v kraevykh zadachakh elektrodinamiki, Izd-vo MGU, M., 1987 | MR

[6] V. S. Ryabenkii, Metod raznostnykh potentsialov dlya nekotorykh zadach mekhaniki sploshnykh sred, Nauka, M., 1987 | MR

[7] A. N. Tikhonov, A. A. Samarskii, “Ob odnorodnykh raznostnykh skhemakh”, ZhVM i MF, 1:1 (1961), 5–63 | MR | Zbl

[8] M. P. Galanin, Yu. P. Popov, Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh: Matematicheskoe modelirovanie, Nauka, Fizmatlit, M., 1995 | MR | Zbl

[9] I. E. Tamm, Osnovy teorii elektrichestva, Nauka, M., 1966 | Zbl

[10] N. M. Zueva, M. S. Mikhailova, V.S. Ryabenkii, Perenos granichnykh uslovii iz beskonechnosti na iskusstvennuyu granitsu dlya raznostnogo uravneniya Laplasa, Preprint IPM im. M. V. Keldysha AN SSSR, 1991, No 110 | MR

[11] K. V. Brushlinskii, V. S. Ryabenkii, N. B. Tuzova, “Perenos granichnogo usloviya cherez vakuum v osesimmetrichnykh zadachakh”, ZhVM i MF, 1992, no. 12, 1929–1939 | MR

[12] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl