Parallel iterative methods with factored preconditioning matrices for solving elliptic equations on triangular grid
Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 27-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

New parallel analogs of the versions of incomplete Cholesky conjugate gradient method and modified incomplete Choletsky conjugate gradient method for solving elliptic equations on unstructed triangular grid on distributed-memory parallel computers are proposed. The construction of the parallel versions of the methods is based on the orderings of grid points depending on the decomposition of the computational domain. The rate of convergence of some proposed methods are investigated both theoretically and by means of calculations on the example of the model problems. The algorithms of realisation of proposed parallel methods are relatively simple.
@article{MM_2007_19_9_a2,
     author = {O. Yu. Milyukova},
     title = {Parallel iterative methods with factored preconditioning matrices for solving elliptic equations on triangular grid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--48},
     publisher = {mathdoc},
     volume = {19},
     number = {9},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_9_a2/}
}
TY  - JOUR
AU  - O. Yu. Milyukova
TI  - Parallel iterative methods with factored preconditioning matrices for solving elliptic equations on triangular grid
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 27
EP  - 48
VL  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_9_a2/
LA  - ru
ID  - MM_2007_19_9_a2
ER  - 
%0 Journal Article
%A O. Yu. Milyukova
%T Parallel iterative methods with factored preconditioning matrices for solving elliptic equations on triangular grid
%J Matematičeskoe modelirovanie
%D 2007
%P 27-48
%V 19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_9_a2/
%G ru
%F MM_2007_19_9_a2
O. Yu. Milyukova. Parallel iterative methods with factored preconditioning matrices for solving elliptic equations on triangular grid. Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 27-48. http://geodesic.mathdoc.fr/item/MM_2007_19_9_a2/

[1] Meijerink J. A., van der Vorst H. A., “An Iterative Solution Method for Linear Systems, of which the Coefficient Matrix is a Symmetric $M$-matrix”, Math. Comp., 31:137 (1977), 148–162 | DOI | MR | Zbl

[2] Gustafsson I., “A Class of First Order Factorization Methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl

[3] Kershaw D., “The Incomplete Choleski-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations”, J. Comp. Phys., 26 (1978), 43–65 | DOI | MR | Zbl

[4] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[5] Milyukova O. Yu., Popov I. V., “Parallelnye iteratsionnye metody s faktorizovannymi matritsami predobuslovlivaniya dlya resheniya diskretnykh ellipticheskikh uravnenii na nestrukturirovannoi treugolnoi setke”, Matem. modelirovanie, 15:10 (2003), 3–16 | MR | Zbl

[6] Milyukova O. Yu., “Nekotorye parallelnye iteratsionnye metody s faktorizovannymi matritsami predobuslovlivaniya dlya resheniya ellipticheskikh uravnenii na treugolnykh setkakh”, Zhurn. vychisl. matem. i matem. fiz., 46:7 (2006), 1096–1112 | MR

[7] Milyukova O. Yu., “O nekotorykh parallelnykh iteratsionnykh metodakh resheniya ellipticheskikh uravnenii na treugolnykh setkakh”, Differentsialnye uravneniya, 42:7 (2006), 956–968 | MR | Zbl

[8] Duff I. S., Meurant G. A., “The Effect of Ordering on Preconditioned Conjugate Gradients”, BIT, 29 (1989), 635–657 | DOI | MR | Zbl

[9] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR

[10] Boldyrev S. N., Levanov E. I., Sukov S. A., Yakobovskii M. V., “Obrabotka i khranenie neregulyarnykh setok bolshogo razmera na mnogoprotsessornykh sistemakh”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy chetvertogo vserossiiskogo seminara (Kazan, 13–16 sentyabrya 2002g.), 33–39

[11] Pascal J. F., Paul-Louis G., Mesh Generation application to finite elements, Hermes Science Publishing, Oxford, 2000 | MR

[12] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya resheniya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl

[13] Popov I., Polyuakov S., Karamzin Yu., “High Accuracy Difference Schemes on Unstructured Triangle Grids”, Numerical Methods and Applications, 5th Int. Conf. NMA 2002, Revised Papers, eds. I. Divov, I. Lirkov, S. Margenov, Z. Zlatev, Springer, Berlin, 2003 | MR

[14] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR

[15] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[16] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[17] Popov I. V., Polyakov C. V., “Postroenie adaptivnykh neregulyarnykh treugolnykh setok dlya dvumernykh mnogosvyaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35 | MR | Zbl

[18] Tkhir A. V., “Metod prodvinutogo fronta dlya postroeniya nestrukturirovannykh setok”, Chislennye metody i prilozheniya, ed. Yu. A. Kuznetsova, Institut vychislitelnoi matematiki RAN, 1995