Modeling of the crack partial closing in the isotropic medium intensify with regular stringers system
Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 105-115
Cet article a éte moissonné depuis la source Math-Net.Ru
On the basis of the elasticity theory methods the mathematical description of model of partial closing of a crack in the isotropic medium with system of alien cross rectilinear inclusions is carried out. Such environment can be interpreted as the unlimited plate, intensify with regular system of edges which cross sections represent rather narrow rectangulars. It is considered, that medium is weakened by periodic system of rectilinear cracks. Definition of unknown contact stress and the sizes of contact zones is reduced to the solution of the singular integrated equation. With the help of algebraization procedure the integrated equation is reduced to the nonlinear algebraic equations system which is solved by method of successive approximations.
@article{MM_2007_19_3_a8,
author = {M. V. Mir-Salim-zadeh},
title = {Modeling of the crack partial closing in the isotropic medium intensify with regular stringers system},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {105--115},
year = {2007},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2007_19_3_a8/}
}
TY - JOUR AU - M. V. Mir-Salim-zadeh TI - Modeling of the crack partial closing in the isotropic medium intensify with regular stringers system JO - Matematičeskoe modelirovanie PY - 2007 SP - 105 EP - 115 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/MM_2007_19_3_a8/ LA - ru ID - MM_2007_19_3_a8 ER -
M. V. Mir-Salim-zadeh. Modeling of the crack partial closing in the isotropic medium intensify with regular stringers system. Matematičeskoe modelirovanie, Tome 19 (2007) no. 3, pp. 105-115. http://geodesic.mathdoc.fr/item/MM_2007_19_3_a8/
[1] Finkel V. M., Fizicheskie osnovy tormozheniya razrusheniya, Metallurgiya, M., 1977
[2] Parton V. Z., Morozov E. M., Mekhanika uprugo-plasticheskogo razrusheniya, Nauka, M., 1985
[3] Mirsalimov V. M., “Nekotorye zadachi konstruktsionnogo tormozheniya treschin”, FKh MM, 22:1 (1986), 94–98
[4] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966
[5] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR
[6] Panasyuk V. V., Savruk M. P., Datsyshin A. P., Raspredelenie napryazhenii okolo treschin v plastinakh i obolochkakh, Naukova dumka, Kiev, 1976 | MR
[7] Mirsalimov V. M., Neodnomernye uprugoplasticheskie zadachi, Nauka, M., 1987