New software for solving systems of nonlinear integro-differential equations for one-, two and three-dimensional initial-boundary value problems
Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 105-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

New computational software for solving non-rigid systems of nonlinear correct integro-differentialc equations of general type is presented. These equations in addition to regular derivatives and integrals may contain fractional derivatives and integrals. For different segments of the time axis the equations can be defined by different expressions provided that the order of the highest derivatives of unknown functions remains constant. To get the solution it is enough to enter the equation in the text form and the necessary data parameters of the problem. The solution can be obtained either in the text form or graphically. Six test problems demonstrate the abilities of the software developed by the authors.
@article{MM_2007_19_2_a8,
     author = {N. G. Bandurin and V. A. Ignatiev},
     title = {New software for solving systems of nonlinear integro-differential equations for one-, two and three-dimensional initial-boundary value problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--111},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_2_a8/}
}
TY  - JOUR
AU  - N. G. Bandurin
AU  - V. A. Ignatiev
TI  - New software for solving systems of nonlinear integro-differential equations for one-, two and three-dimensional initial-boundary value problems
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 105
EP  - 111
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_2_a8/
LA  - ru
ID  - MM_2007_19_2_a8
ER  - 
%0 Journal Article
%A N. G. Bandurin
%A V. A. Ignatiev
%T New software for solving systems of nonlinear integro-differential equations for one-, two and three-dimensional initial-boundary value problems
%J Matematičeskoe modelirovanie
%D 2007
%P 105-111
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_2_a8/
%G ru
%F MM_2007_19_2_a8
N. G. Bandurin; V. A. Ignatiev. New software for solving systems of nonlinear integro-differential equations for one-, two and three-dimensional initial-boundary value problems. Matematičeskoe modelirovanie, Tome 19 (2007) no. 2, pp. 105-111. http://geodesic.mathdoc.fr/item/MM_2007_19_2_a8/

[1] Denisov A. M., Makeev A. S., “Iteratsionnye metody resheniya obratnoi zadachi dlya odnoi modeli populyatsii”, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1480–1489 | MR | Zbl

[2] Trinks C., Ruge P., “Treatment of dynamic systems with fractional derivatives without evaluating memory-integrals”, Computational Mechanics, 2002, no. 29, 471–476 | DOI | MR | Zbl

[3] Zelenyi A. V., Milovanov A. V., “Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyatsii k problemam kosmicheskoi elektrodinamiki”, Uspekhi fizicheskikh nauk, 174:8 (2004), 809–852 | DOI

[4] Biderman V. L., Teoriya mekhanicheskikh kolebanii, Mir, M., 1999

[5] Bandurin N. G., “Novyi chislennyi metod poryadka $n$ dlya resheniya integro-differentsialnykh uravnenii obschego vida”, Vychislitelnye tekhnologii, 7:2 (2002), 3–10 | MR | Zbl

[6] Ignatev V. A., Ignatev O. V., “O chislennom reshenii differentsialnykh i integro-differentsialnykh uravnenii na osnove matrits integrirovaniya i differentsirovaniya”, Vestnik VolgGASU, seriya: Tekhnicheskie nauki, 2004, no. 4(12), 140–154 | MR

[7] Bandurin N. G., “Bolshie dinamicheskie peremescheniya i deformatsii massivnoi rastyazhimoi niti v dvizhuscheisya srede”, Prikladnaya matematika i mekhanika, 2003, no. 2, 265–271 | MR

[8] Agrawal P., Yuan L., “A numerical scheme for dynamic systems containing fractional derivatives”, Proc. of DETC'98 1998 ASME Design Eng. Techn. Conf. Atlanta, Georgia, 1998, 1–4

[9] Diethelm K., Ford N. J., Freed A. D., Luchko Yu., “Algorithms for the fractional calculus: A selection of numerical methods”, Comput. Methods in Appl. Mech. and Eng., 2004, no. 8, 3–34 | MR

[10] Edwards J. T., Ford N. J., Simpson A. C., “The numerical solution of linear multi-term fractional differential equations: systems of equations”, Journal of Comp. and Appl. Math., 148 (2002), 401–418 | DOI | MR | Zbl

[11] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[12] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1968

[13] Berezin I. S., Zhidkov N. P., Metody vychislenii, t. 2, Fizmatgiz, M., 1962