Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition
Matematičeskoe modelirovanie, Tome 19 (2007) no. 12, pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Neural networks are considered as an effective and powerful tool for numerical solution of boundary value problems for partial differential equations. In this paper we focus our attention on the case of elliptic equations and domains admitting decomposition. The approximation of Dirichlet problem solution for the Laplace equation in complicated domain by means of neural networks is considered. Some original neural network training algorithms based on ideas of evolution modeling are offered. These algorithms allow some effective parallelization and generalization on similar problems.
@article{MM_2007_19_12_a5,
     author = {A. N. Vasilyev and D. A. Tarkhov},
     title = {Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {52--62},
     publisher = {mathdoc},
     volume = {19},
     number = {12},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/}
}
TY  - JOUR
AU  - A. N. Vasilyev
AU  - D. A. Tarkhov
TI  - Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 52
EP  - 62
VL  - 19
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/
LA  - ru
ID  - MM_2007_19_12_a5
ER  - 
%0 Journal Article
%A A. N. Vasilyev
%A D. A. Tarkhov
%T Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition
%J Matematičeskoe modelirovanie
%D 2007
%P 52-62
%V 19
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/
%G ru
%F MM_2007_19_12_a5
A. N. Vasilyev; D. A. Tarkhov. Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition. Matematičeskoe modelirovanie, Tome 19 (2007) no. 12, pp. 52-62. http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/

[1] S. Khaikin, Neironnye seti: polnyi kurs, 2-e izdanie, Izd. dom “Vilyams”, M., 2006

[2] “Neirokompyutery i ikh primenenie”, Neiromatematika, kn. 6, IPRZhR, M., 2002, 448

[3] Isaac E. Lagaris, Aristidis Likas, Dimitrios I. Fotiadis, “Artificial Neural Networks for Solving Ordinary and Partial Differential Equations”, IEEE Transactions on Neural Networks, 9:5 (1998), 987–1000 | DOI

[4] Ryusuke Masuoka, “Neural Networks Learning Differential Data”, IEICE Trans. Inf. and Syst., E83-D:8 (2000), 1291–1299

[5] V. I. Gorbachenko, “Metody resheniya differentsialnykh uravnenii v chastnykh proizvodnykh na kletochnykh neironnykh setyakh”, Neirokompyuter, 1998, no. 3–4, 5–14

[6] V. I. Gorbachenko, “Neirokompyutery v reshenii kraevykh zadach teorii polya”, Nauchnaya seriya “Neirokompyutery i ikh primenenie”, kn. 10, Radiotekhnika, M., 2003

[7] Edward J. Kansa, Motivation for using radial basis functions to solve PDEs, Lawrence Livermore National Laboratory and Embry-Riddle Aeronatical University, 1999

[8] A. N. Vasilev, D. A. Tarkhov, “Novye podkhody na osnove KVR-setei k resheniyu kraevykh zadach dlya uravneniya Laplasa na ploskosti”, Neirokompyutery: razrabotka, primenenie, Radiotekhnika, M., 2004, 7–8

[9] A. N. Vasilev, D. A. Tarkhov, “Neironnye seti kak novyi universalnyi podkhod k chislennomu resheniyu zadach matematicheskoi fiziki”, Neirokompyutery: razrabotka, primenenie, Radiotekhnika, M., 2004, 7–8

[10] A. N. Vasilev, D. A. Tarkhov, “Neirosetevye podkhody k resheniyu kraevykh zadach v mnogomernykh sostavnykh oblastyakh”, Izvestiya TRTU, 2004, no. 9

[11] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[12] D. A. Tarkhov, Neironnye seti: modeli i algoritmy, Spravochnik, Radiotekhnika, M., 2005

[13] A. G. Ivakhnenko, Yu. P. Yurachkovskii, Modelirovanie slozhnykh sistem po eksperimentalnym dannym, Radio i svyaz, M., 1987

[14] L. A. Rastrigin, R. Kh. Erenshtein, Metod kollektivnogo raspoznavaniya, Energoizdat, M., 1981 | MR