Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_12_a5, author = {A. N. Vasilyev and D. A. Tarkhov}, title = {Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {52--62}, publisher = {mathdoc}, volume = {19}, number = {12}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/} }
TY - JOUR AU - A. N. Vasilyev AU - D. A. Tarkhov TI - Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition JO - Matematičeskoe modelirovanie PY - 2007 SP - 52 EP - 62 VL - 19 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/ LA - ru ID - MM_2007_19_12_a5 ER -
%0 Journal Article %A A. N. Vasilyev %A D. A. Tarkhov %T Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition %J Matematičeskoe modelirovanie %D 2007 %P 52-62 %V 19 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/ %G ru %F MM_2007_19_12_a5
A. N. Vasilyev; D. A. Tarkhov. Evolutionary algorithms of solution to boundary value problems in domains admitting decomposition. Matematičeskoe modelirovanie, Tome 19 (2007) no. 12, pp. 52-62. http://geodesic.mathdoc.fr/item/MM_2007_19_12_a5/
[1] S. Khaikin, Neironnye seti: polnyi kurs, 2-e izdanie, Izd. dom “Vilyams”, M., 2006
[2] “Neirokompyutery i ikh primenenie”, Neiromatematika, kn. 6, IPRZhR, M., 2002, 448
[3] Isaac E. Lagaris, Aristidis Likas, Dimitrios I. Fotiadis, “Artificial Neural Networks for Solving Ordinary and Partial Differential Equations”, IEEE Transactions on Neural Networks, 9:5 (1998), 987–1000 | DOI
[4] Ryusuke Masuoka, “Neural Networks Learning Differential Data”, IEICE Trans. Inf. and Syst., E83-D:8 (2000), 1291–1299
[5] V. I. Gorbachenko, “Metody resheniya differentsialnykh uravnenii v chastnykh proizvodnykh na kletochnykh neironnykh setyakh”, Neirokompyuter, 1998, no. 3–4, 5–14
[6] V. I. Gorbachenko, “Neirokompyutery v reshenii kraevykh zadach teorii polya”, Nauchnaya seriya “Neirokompyutery i ikh primenenie”, kn. 10, Radiotekhnika, M., 2003
[7] Edward J. Kansa, Motivation for using radial basis functions to solve PDEs, Lawrence Livermore National Laboratory and Embry-Riddle Aeronatical University, 1999
[8] A. N. Vasilev, D. A. Tarkhov, “Novye podkhody na osnove KVR-setei k resheniyu kraevykh zadach dlya uravneniya Laplasa na ploskosti”, Neirokompyutery: razrabotka, primenenie, Radiotekhnika, M., 2004, 7–8
[9] A. N. Vasilev, D. A. Tarkhov, “Neironnye seti kak novyi universalnyi podkhod k chislennomu resheniyu zadach matematicheskoi fiziki”, Neirokompyutery: razrabotka, primenenie, Radiotekhnika, M., 2004, 7–8
[10] A. N. Vasilev, D. A. Tarkhov, “Neirosetevye podkhody k resheniyu kraevykh zadach v mnogomernykh sostavnykh oblastyakh”, Izvestiya TRTU, 2004, no. 9
[11] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl
[12] D. A. Tarkhov, Neironnye seti: modeli i algoritmy, Spravochnik, Radiotekhnika, M., 2005
[13] A. G. Ivakhnenko, Yu. P. Yurachkovskii, Modelirovanie slozhnykh sistem po eksperimentalnym dannym, Radio i svyaz, M., 1987
[14] L. A. Rastrigin, R. Kh. Erenshtein, Metod kollektivnogo raspoznavaniya, Energoizdat, M., 1981 | MR