Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_12_a4, author = {A. N. Vasilyev and D. A. Tarkhov}, title = {Construction of approximate neural network models according to heterogeneous data}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--51}, publisher = {mathdoc}, volume = {19}, number = {12}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_12_a4/} }
TY - JOUR AU - A. N. Vasilyev AU - D. A. Tarkhov TI - Construction of approximate neural network models according to heterogeneous data JO - Matematičeskoe modelirovanie PY - 2007 SP - 43 EP - 51 VL - 19 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_12_a4/ LA - ru ID - MM_2007_19_12_a4 ER -
A. N. Vasilyev; D. A. Tarkhov. Construction of approximate neural network models according to heterogeneous data. Matematičeskoe modelirovanie, Tome 19 (2007) no. 12, pp. 43-51. http://geodesic.mathdoc.fr/item/MM_2007_19_12_a4/
[1] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004
[2] Vasilev A. N., Tarkhov D. A., “Neirosetevoi podkhod k resheniyu nekotorykh neklassicheskikh zadach matematicheskoi fiziki”, Sbornik nauchnykh trudov VII Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Neiroinformatika-2005”, Ch. 2, MIFI, M., 2005, 52–60
[3] Vasilev A. N., Tarkhov D. A., “Neirosetevaya metodologiya postroeniya priblizhennykh reshenii differentsialnykh uravnenii po eksperimentalnym dannym”, Intellektualnye i mnogoprotsessornye sistemy, Materialy mezhdunarodnoi konferentsii. T. 2, Taganrog-Donetsk-Minsk, 2005, 219–223
[4] Troitskii V. A., Optimization Approaches to Some Observation Problems for PDE, http://www.inftech.webservis.ru
[5] Tarkhov D.A., Neironnye seti: modeli i algoritmy, Radiotekhnika, M., 2005
[6] Ivakhnenko A. G., Yurachkovskii Yu. P., Modelirovanie slozhnykh sistem po eksperimentalnym dannym, Radio i svyaz, M., 1987