Investigation of boundary-value problems for the singular perturbed differential equation of high order
Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the different methods the boundary-value problems for the differential equations of high order with the small parameter $\varepsilon$ at higher derivatives are investigated. A comparative analysis of the obtained results is given at diminution of $\varepsilon$. The existence of a boundary layer for a derivative from the solutions is established. It is shown, that at diminution of $\varepsilon$ the solutions of one boundary-value problem (when for the solution $\psi(r)$ of the given equation sets the next boundary conditions: $\psi(0)=0$, $\psi''(0)=0$, $\psi^{\mathrm{IV}}(0)=0$, $\cdots$; $\psi(\infty)=0$) converge to the solutions of a degenerate problem (Schrödinger equation), and for the other (when the boundary conditions are given by: $\psi(0)=0$, $\psi'(0)=0$, $\psi''(0)=0$, $\cdots$; $\psi(\infty)=0$) such convergence doesn't exist.
@article{MM_2007_19_11_a7,
     author = {I. V. Amirkhanov and E. P. Zhidkov and D. Z. Muzafarov and N. R. Sarker and I. Sarhadov and Z. A. Sharipov},
     title = {Investigation of boundary-value problems for the singular perturbed differential equation of high order},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {19},
     number = {11},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_11_a7/}
}
TY  - JOUR
AU  - I. V. Amirkhanov
AU  - E. P. Zhidkov
AU  - D. Z. Muzafarov
AU  - N. R. Sarker
AU  - I. Sarhadov
AU  - Z. A. Sharipov
TI  - Investigation of boundary-value problems for the singular perturbed differential equation of high order
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 65
EP  - 79
VL  - 19
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_11_a7/
LA  - ru
ID  - MM_2007_19_11_a7
ER  - 
%0 Journal Article
%A I. V. Amirkhanov
%A E. P. Zhidkov
%A D. Z. Muzafarov
%A N. R. Sarker
%A I. Sarhadov
%A Z. A. Sharipov
%T Investigation of boundary-value problems for the singular perturbed differential equation of high order
%J Matematičeskoe modelirovanie
%D 2007
%P 65-79
%V 19
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_11_a7/
%G ru
%F MM_2007_19_11_a7
I. V. Amirkhanov; E. P. Zhidkov; D. Z. Muzafarov; N. R. Sarker; I. Sarhadov; Z. A. Sharipov. Investigation of boundary-value problems for the singular perturbed differential equation of high order. Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 65-79. http://geodesic.mathdoc.fr/item/MM_2007_19_11_a7/

[1] Kadyshevskii V. G., Mir-Kasimov R. M., Skachkov N. B., EChAYa, 2:3 (1972), 637

[2] Amirkhanov I. V., Konnova S. V., Zhidkov E. P., Comp. Phys. Commun., 126 (2000), 12–15 | DOI | Zbl

[3] Amirkhanov I. V., Zhidkov E. P., Konnova S. V., Soobschenie OIYaI P11-2000-54, Dubna, 2000

[4] Amirkhanov I. V. i dr., Differentsialnye uravneniya, 37:1 (2000), 83–90 | MR

[5] Amirkhanov I. V. i dr., Matem. modelirovanie, 15:9 (2003), 3–16 | MR | Zbl

[6] Amirkhanov I. V. i dr., Soobschenie OIYaI P11-2004-147, Dubna, 2004

[7] Tikhonov A. N., Matem. sb., 31(73):3 (1952), 575–586 | MR | Zbl

[8] Vishik M. I., Lyusternik L. A., UMN, 12:5(77) (1957), 3–122 | MR | Zbl

[9] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[10] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[11] Butuzov V. F., Nefedov N. N., Fedotova E. V., ZhVM i MF, 27:2 (1987), 226–236 | MR | Zbl

[12] Butuzov V. F., Nefedov N. N., Polezhaeva E. V., ZhVM i MF, 29:7 (1989), 1023–1035 | MR | Zbl