Computational modeling for three-dimensional viscous sub/supersonic flows with shock waves
Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 112-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The description of computational method is submitted for three-dimensional viscous flows with shock waves. The description of the Boldwin-Lomax algorithm of turbulent viscous calculation is stated. On the base of presented method a set of 3-D flows in channels and engine nozzles and some classical problems are computed. Calculation results are compared with experimental data for local and integral parameters.
@article{MM_2007_19_11_a13,
     author = {D. M. Borisov and A. S. Vasyutichev and I. V. Laptev and A. M. Rudenko},
     title = {Computational modeling for three-dimensional viscous sub/supersonic flows with shock waves},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {112--120},
     publisher = {mathdoc},
     volume = {19},
     number = {11},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_11_a13/}
}
TY  - JOUR
AU  - D. M. Borisov
AU  - A. S. Vasyutichev
AU  - I. V. Laptev
AU  - A. M. Rudenko
TI  - Computational modeling for three-dimensional viscous sub/supersonic flows with shock waves
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 112
EP  - 120
VL  - 19
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_11_a13/
LA  - ru
ID  - MM_2007_19_11_a13
ER  - 
%0 Journal Article
%A D. M. Borisov
%A A. S. Vasyutichev
%A I. V. Laptev
%A A. M. Rudenko
%T Computational modeling for three-dimensional viscous sub/supersonic flows with shock waves
%J Matematičeskoe modelirovanie
%D 2007
%P 112-120
%V 19
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_11_a13/
%G ru
%F MM_2007_19_11_a13
D. M. Borisov; A. S. Vasyutichev; I. V. Laptev; A. M. Rudenko. Computational modeling for three-dimensional viscous sub/supersonic flows with shock waves. Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 112-120. http://geodesic.mathdoc.fr/item/MM_2007_19_11_a13/

[1] B. S. Baldwin, H. Lomax, “Thin-layer approximation and algebraic model for separated turbulent flows”, AIAA, 1978, 78–257

[2] E. R. Van Driest, “On turbulent flow near wall”, IAS, 23:11 (1956), 87–92

[3] Krauze E., Fernkholts Kh. (red.), Trekhmernye turbulentnye pogranichnye sloi, Mir, M., 1985

[4] G. Hageman, C.-A. Schley, E. Odintsov, A. Sobatchkine, “Nozzle flowfield analysis with particular regard to 3D-plug-cluster configurations”, AIAA, 1996, 2954

[5] G. Shlikhting, Teoriya pogranichnogo sloya, Nauka, M., 1974

[6] O. M. Belotserkovskii, Yu. M. Davydov, Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982

[7] D. M. Borisov, V. E. Gorshkov, “Metod rascheta trekhmernykh dvukhfaznykh techenii vblizi zatuplennykh tel ili pri vduve poperechnykh strui”, Matem. modelirovanie, 8:6 (1996), 38–46 | Zbl

[8] U. G. Pirumov, G. S. Roslyakov, Chislennye metody gazovoi dinamiki, Vysshaya shkola, M., 1987 | MR | Zbl

[9] B. C. Avduevskii, K. I. Medvedev, M. N. Polyanskii, “Vzaimodeistvie sverkhzvukovogo potoka s poperechnoi struei, vduvaemoi cherez krugloe otverstie v plastine”, Izv. AN SSSR, MZhG, 1970, no. 5, 193–197

[10] N. D. Kovalenko, Vozmuscheniya sverkhzvukovogo potoka pri massoteplopodvode, Naukova dumka, Kiev, 1980

[11] A. I. Glagolev, A. I. Zubkov, Yu. A. Panov, “Obtekanie struinogo gazoobraznogo prepyatstviya na plastine sverkhzvukovym potokom”, Izv. AN SSSR, MZhG, 1967, no. 3, 92–102

[12] A. I. Glagolev, A. I. Zubkov, Yu. A. Panov, “Vzaimodeistvie strui gaza, vytekayuschei iz otverstiya na plastine, so sverkhzvukovym potokom”, Izv. AN SSSR, MZhG, 1968, no. 2, 99–103

[13] A. I. Glagolev, A. I. Zubkov, Yu. A. Panov, “Istechenie gazovykh strui v sverkhzvukovoi potok iz otverstii v bokovoi poverkhnosti tela”, Vestnik MGU. Matematika, mekhanika, 1968, no. 5, 66–72

[14] A. I. Zubkov, A. I. Glagolev, G. N. Galperin, “O razmerakh zony otryva, vyzvannoi vduvom strui v sverkhzvukovoi potok”, Gidromekhanika i teoriya uprugosti, 1975, no. 19