Numerical simulation of the solid phase impact on the blunt body surface in supersonic dusty flow
Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 101-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper solid phase impact on body surface in a supersonic dusty flow over a blunt body is investigated numerically. A realization of the discrete-element method is used where each modeling particle corresponds to one real particle. The influence of particle reflection from body surface, inter-particle collisions and particle rotation on parameters of the body-flow interaction is investigated.
@article{MM_2007_19_11_a12,
     author = {D. L. Reviznikov and A. V. Sposobin},
     title = {Numerical simulation of the solid phase impact on the blunt body surface in supersonic dusty flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {19},
     number = {11},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_11_a12/}
}
TY  - JOUR
AU  - D. L. Reviznikov
AU  - A. V. Sposobin
TI  - Numerical simulation of the solid phase impact on the blunt body surface in supersonic dusty flow
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 101
EP  - 111
VL  - 19
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_11_a12/
LA  - ru
ID  - MM_2007_19_11_a12
ER  - 
%0 Journal Article
%A D. L. Reviznikov
%A A. V. Sposobin
%T Numerical simulation of the solid phase impact on the blunt body surface in supersonic dusty flow
%J Matematičeskoe modelirovanie
%D 2007
%P 101-111
%V 19
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_11_a12/
%G ru
%F MM_2007_19_11_a12
D. L. Reviznikov; A. V. Sposobin. Numerical simulation of the solid phase impact on the blunt body surface in supersonic dusty flow. Matematičeskoe modelirovanie, Tome 19 (2007) no. 11, pp. 101-111. http://geodesic.mathdoc.fr/item/MM_2007_19_11_a12/

[1] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR

[2] Sternin L. E., Maslov B. N., Shraiber A. A., Podvysotskii A. M., Dvukhfaznye mono- i polidispersnye techeniya gaza s chastitsami, Mashinostroenie, M., 1980

[3] Crowe C. T., Sommerfeld M., Tsuji Y., Multiphase flows with droplets and particles, CRC Press LLC, 1998

[4] Gilinskii M. M., Stasenko A. L., Sverkhzvukovye gazodispersnye strui, Mashinostroenie, M., 1990

[5] Tsirkunov Yu. M., “Gas-particle flows around bodies – key problems, modeling and numerical analysis”, Proc. Fourth International Conference on Multiphase Flow (May 27–June 1, 2001, New Orleans, LA, USA), eds. E. Michaelides, CD ROM Proc. ICMF'2001 No 609

[6] Vasilevskii E. B., Dombrovskii L. A., Mikhatulin D. S., Polezhaev Yu. V., “Teploobmen v okrestnosti tochki tormozheniya pri sverkhzvukovom obtekanii tel geterogennym potokom so skolzheniem faz”, Teplofizika vysokikh temperatur, 39:6 (2001), 925–938

[7] Kolesnikov K. S., Leontev A. I. (red.), Mashinostroenie. T. 1, 2. Teoreticheskaya mekhanika, termodinamika, teploobmen, Entsiklopediya v 40 t., Mashinostroenie, M., 1999 | Zbl

[8] Mikhatulin D. S., Polezhaev Yu. V., Reviznikov D. L., “Issledovanie razrusheniya stekloplastika pri polete v zapylennoi atmosfere”, Teplofizika vysokikh temperatur, 39:4 (2001), 640–648

[9] Mikhatulin D. S., Polezhaev Yu. V., Reviznikov D. L., “Issledovanie razrusheniya uglerodnogo teplozaschitnogo materiala pri polete v zapylennoi atmosfere”, Teplofizika vysokikh temperatur, 41:1 (2003), 98–105

[10] Timoshenko V. I., Zubkova E.Yu., “K otsenke teplovogo i erozionnogo vozdeistviya sverkhzvukovogo zapylennogo potoka na zatuplennyi konus”, IFZh, 61:4 (1991), 564–569

[11] Golovachev Yu. V., Shmidt A. A., “Obtekanie zatuplennogo tela sverkhzvukovym potokom zapylennogo gaza”, Izv. AN SSSR, MZhG, 1982, no. 3, 73–77

[12] Ivanov M. S., Rogazinskii S. V., “Sravnitelnyi analiz algoritmov metoda pryamogo modelirovaniya statisticheskogo modelirovaniya v dinamike razrezhennogo gaza”, ZhVM i MF, 28:7 (1988), 1058–1070 | MR | Zbl

[13] Volkov A. N., Tsirkunov Yu. M., “Kineticheskaya model stolknovitelnoi primesi v zapylennom gaze i ee primenenie k raschetu obtekaniya tel”, Izv. RAN, MZhG, 2000, no. 3, 81–97 | MR | Zbl

[14] Volkov A. N., Tsirkunov Yu. M., “Vliyanie dispersnoi primesi na techenie i teploobmen pri poperechnom obtekanii tsilindra sverkhzvukovym potokom zapylennogo gaza”, Mekhanika zhidkosti i gaza, 2005, no. 4, 68–85

[15] Osiptsov A. P., Shapiro E. G., “Obtekanie sfery zapylennym gazom s bolshoi sverkhzvukovoi skorostyu”, Issledovanie gazodinamiki i teploobmena slozhnykh techenii odnorodnykh i mnogofaznykh sred, 1990, 89–105, Izd-vo MGU, M.

[16] Crowe C. T., “Review – numerical models for dilute gas-particle flows”, J. Fluid Engineering, 104, 297–303 | DOI

[17] Henderson C. B., “Drag coefficients of spheres in continuum and rarefied flows”, AIAA Journal, 14:6 (1976), 707–708 | DOI

[18] Rubinow S. I., Keller J. B., “The transverse force on a spinning sphere moving in viscous fluid”, J. Fluid Mech., 11 (1961), 447–459 | DOI | MR | Zbl

[19] Oesterlé B., Bui Dinh T., “Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, 2”, Experiments in Fluids, 25:1 (1998), 16–22 | DOI

[20] Dennis S. C. R., Singh S. N., Ingham D. B., “The steady flow due to a rotating sphere at low and moderate Reynolds numbers, 2”, J. Fluid Mech., 101 (1981), 257–280 | DOI

[21] Lyubimov A. N., Rusanov V. V., Techeniya gaza okolo tupykh tel, Ch. 1, Nauka, M., 1970