Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_10_a4, author = {R. V. Zhalnin and N. V. Zmitrenko and M. E. Ladonkina and V. F. Tishkin}, title = {Numerical simulation of {Richtmyer--Meshkov} instability development using the difference schemes of high order of accuracy}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {61--66}, publisher = {mathdoc}, volume = {19}, number = {10}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/} }
TY - JOUR AU - R. V. Zhalnin AU - N. V. Zmitrenko AU - M. E. Ladonkina AU - V. F. Tishkin TI - Numerical simulation of Richtmyer--Meshkov instability development using the difference schemes of high order of accuracy JO - Matematičeskoe modelirovanie PY - 2007 SP - 61 EP - 66 VL - 19 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/ LA - ru ID - MM_2007_19_10_a4 ER -
%0 Journal Article %A R. V. Zhalnin %A N. V. Zmitrenko %A M. E. Ladonkina %A V. F. Tishkin %T Numerical simulation of Richtmyer--Meshkov instability development using the difference schemes of high order of accuracy %J Matematičeskoe modelirovanie %D 2007 %P 61-66 %V 19 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/ %G ru %F MM_2007_19_10_a4
R. V. Zhalnin; N. V. Zmitrenko; M. E. Ladonkina; V. F. Tishkin. Numerical simulation of Richtmyer--Meshkov instability development using the difference schemes of high order of accuracy. Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 61-66. http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/
[1] N. V. Zmitrenko, M. E. Ladonkina, V. F. Tishkin, “Chislennoe issledovanie turbulentnogo peremeshivaniya dlya odnoi zadachi o razvitii neustoichivosti Rikhtmaera–Meshkova”, VANT, ser. Mat. modelir. fiz. protsessov, 1 (2004)
[2] F. Poggi, M.-H. Thorembey, G. Rodrigues, “Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability”, Phisics of Fluids, 10:11 (1998), 2698–2700 | DOI
[3] G.-S. Jiang , C.-W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl
[4] A. K. Henrick, T. D. Aslam, J. M. Powers, “Mapped weighted essentially non-oscillatory schemes: Archieving optimal order near critical points”, Journal of Computational Physics, 207 (2005), 542–567 | DOI | Zbl
[5] W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conserva-tion laws, ICASE Report 97-65, 1997