Numerical simulation of Richtmyer--Meshkov instability development using the difference schemes of high order of accuracy
Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In present work the numerical simulation of one problem of Richtmyer–Meshkov instability development is considered using the WENO-schemes of high order of accuracy. There is an analysis of the obtained results in comparison with the experimental ones and with the numerical results previously supplied by NUT code.
@article{MM_2007_19_10_a4,
     author = {R. V. Zhalnin and N. V. Zmitrenko and M. E. Ladonkina and V. F. Tishkin},
     title = {Numerical simulation of {Richtmyer--Meshkov} instability development using the difference schemes of high order of accuracy},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {19},
     number = {10},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/}
}
TY  - JOUR
AU  - R. V. Zhalnin
AU  - N. V. Zmitrenko
AU  - M. E. Ladonkina
AU  - V. F. Tishkin
TI  - Numerical simulation of Richtmyer--Meshkov instability development using the difference schemes of high order of accuracy
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 61
EP  - 66
VL  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/
LA  - ru
ID  - MM_2007_19_10_a4
ER  - 
%0 Journal Article
%A R. V. Zhalnin
%A N. V. Zmitrenko
%A M. E. Ladonkina
%A V. F. Tishkin
%T Numerical simulation of Richtmyer--Meshkov instability development using the difference schemes of high order of accuracy
%J Matematičeskoe modelirovanie
%D 2007
%P 61-66
%V 19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/
%G ru
%F MM_2007_19_10_a4
R. V. Zhalnin; N. V. Zmitrenko; M. E. Ladonkina; V. F. Tishkin. Numerical simulation of Richtmyer--Meshkov instability development using the difference schemes of high order of accuracy. Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 61-66. http://geodesic.mathdoc.fr/item/MM_2007_19_10_a4/

[1] N. V. Zmitrenko, M. E. Ladonkina, V. F. Tishkin, “Chislennoe issledovanie turbulentnogo peremeshivaniya dlya odnoi zadachi o razvitii neustoichivosti Rikhtmaera–Meshkova”, VANT, ser. Mat. modelir. fiz. protsessov, 1 (2004)

[2] F. Poggi, M.-H. Thorembey, G. Rodrigues, “Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability”, Phisics of Fluids, 10:11 (1998), 2698–2700 | DOI

[3] G.-S. Jiang , C.-W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl

[4] A. K. Henrick, T. D. Aslam, J. M. Powers, “Mapped weighted essentially non-oscillatory schemes: Archieving optimal order near critical points”, Journal of Computational Physics, 207 (2005), 542–567 | DOI | Zbl

[5] W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conserva-tion laws, ICASE Report 97-65, 1997