Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_10_a3, author = {E. L. Kartasheva and A. S. Minkin and V. A. Gasilov}, title = {Triangulation method of complex {B-spline} segments}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {44--60}, publisher = {mathdoc}, volume = {19}, number = {10}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_10_a3/} }
TY - JOUR AU - E. L. Kartasheva AU - A. S. Minkin AU - V. A. Gasilov TI - Triangulation method of complex B-spline segments JO - Matematičeskoe modelirovanie PY - 2007 SP - 44 EP - 60 VL - 19 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_10_a3/ LA - ru ID - MM_2007_19_10_a3 ER -
E. L. Kartasheva; A. S. Minkin; V. A. Gasilov. Triangulation method of complex B-spline segments. Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 44-60. http://geodesic.mathdoc.fr/item/MM_2007_19_10_a3/
[1] D. Rodzhers, Dzh. Adams, Matematicheskie osnovy mashinnoi grafiki, Mashinostroenie, M., 1980
[2] A. Foks, M. Pratt, Vychislitelnaya geometriya Primenenie v proektirovanii i na proizvodstve, Mir, M., 1982 | MR
[3] D. Rodzhers, Dzh. Adams, Matematicheskie osnovy kompyuternoi grafiki, Mir, M., 2001
[4] M. G. Cox, The numerical evaluation of $B$-Splines, National Physical Laboratory DNAC 4, August 1971 | MR
[5] E. Lee, “Rational Bezier Representation for Conies”, SIAM, 1986, 3–27 | MR
[6] Carole Blank, Christophe Schlick, More accurate representation of conics, NURBS, Technical Report, LaBRI, France
[7] E. Dimas, D. Briassoulis, “3D geometric modelling based on NURBS: a review”, Advances in Engineering Software, 30 (1999), 741–751 | DOI
[8] X. Sheng, B. E. Hirsch, “Triangulation of trimmed surfaces in parametric space”, Computer Aided Design, 24:8 (1992), 437–444 | DOI | Zbl
[9] L. A. Piegl, M. A. Richard, “Tessellating trimmed NURBS surfaces”, Computer Aided Design, 27:1 (1995), 16–26 | DOI | Zbl
[10] J. C. Cuilliere, “An adaptive method for the automatic triangulation of 3D parametric surfaces”, Computer Aided Design, 30:2 (1998), 139–149 | DOI
[11] B. Hamann, P. Tsai, “A tessellation algorithm for the representation of trimmed NURBS surfaces with arbitrary trimming”, Computer Aided Design, 28:6–7 (1996), 461–72 | DOI | MR
[12] S. Kumar, D. Manocha, “Efficient rendering of trimmed NURBS surfaces?”, Computer Aided Design, 27:7 (1995), 509–521 | DOI | Zbl
[13] Les A Piegl, Wayne Tiller, “Geometry-based triangulation of trimmed NURBS surfaces?”, Computer Aided Design, 30:1 (1998), 11–18 | DOI
[14] G. V. V. Ravi Kumar et al., “Geometry based triangulation of multiple trimmed NURBS surfaces?”, Computer Aided Design, 33 (2001), 439–454 | DOI
[15] Pascal Jean Frey, Paul Louis Jeorge, Mesh Generation, Hermes Science Publishing, Oxford, 2000 | MR
[16] E. L. Kartasheva, “Instrumentalnye sredstva podgotovki i analiza dannykh dlya resheniya trekhmernykh zadach matematicheskoi fiziki”, Matem. modelirovanie, 9:7 (1997), 113–127 | Zbl
[17] F. Preparata, M. Shaimos, Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989 | MR | Zbl
[18] Gerald Farin, Curves and surfaces for computer aided geometric design: a practical guide, Academic Press Professional, Inc., San Diego, CA, USA, 1988 | MR | Zbl
[19] Hao Chen and Jonathan Bishop, “Delaunay Triangulation for Curved Surfaces”, 6th International Meshing Roundtable, Proceedings, 1997, 115–127
[20] Robert Haines, NURBS and triangular NURBS a transfer report, , 2001 http://people.man.ac.uk/~mbacprh/pages/data/XferReport.pdf
[21] Philip Fong, Hans-Peter Seidel, An Implementation of Triangular $B$-Spline Surfaces over Arbitrary Triangulation, http://citeseer.ist.psu.edu/fong93implementation.html
[22] Gunther Greiner, Hans-Peter Seidel, Modeling with Triangular $B$-Splines, Proc. ACM/IEEE Solid Modeling Symposium '93, http://citeseer.ist.psu.edu/greiner93modeling.html