Triangulation method of complex B-spline segments
Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 44-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Geometry model creation is necessary stage of numerical data preparation process. This problem can be solved by means of special CAD systems working with parametric curves and surfaces and using B-rep approach. This article suppose using B-spline model for object geometry description. Next stage of data preparation is mesh generation. An algorithm based on modified advancing front technique in plane was suggested for B-spline surface mesh generation with holes and complex boundaries. The parametric prototype retrieval algorithms for B-spline curves and surfaces is using in B-spline surface triangulation process.
@article{MM_2007_19_10_a3,
     author = {E. L. Kartasheva and A. S. Minkin and V. A. Gasilov},
     title = {Triangulation method of complex {B-spline} segments},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--60},
     year = {2007},
     volume = {19},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_10_a3/}
}
TY  - JOUR
AU  - E. L. Kartasheva
AU  - A. S. Minkin
AU  - V. A. Gasilov
TI  - Triangulation method of complex B-spline segments
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 44
EP  - 60
VL  - 19
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_10_a3/
LA  - ru
ID  - MM_2007_19_10_a3
ER  - 
%0 Journal Article
%A E. L. Kartasheva
%A A. S. Minkin
%A V. A. Gasilov
%T Triangulation method of complex B-spline segments
%J Matematičeskoe modelirovanie
%D 2007
%P 44-60
%V 19
%N 10
%U http://geodesic.mathdoc.fr/item/MM_2007_19_10_a3/
%G ru
%F MM_2007_19_10_a3
E. L. Kartasheva; A. S. Minkin; V. A. Gasilov. Triangulation method of complex B-spline segments. Matematičeskoe modelirovanie, Tome 19 (2007) no. 10, pp. 44-60. http://geodesic.mathdoc.fr/item/MM_2007_19_10_a3/

[1] D. Rodzhers, Dzh. Adams, Matematicheskie osnovy mashinnoi grafiki, Mashinostroenie, M., 1980

[2] A. Foks, M. Pratt, Vychislitelnaya geometriya Primenenie v proektirovanii i na proizvodstve, Mir, M., 1982 | MR

[3] D. Rodzhers, Dzh. Adams, Matematicheskie osnovy kompyuternoi grafiki, Mir, M., 2001

[4] M. G. Cox, The numerical evaluation of $B$-Splines, National Physical Laboratory DNAC 4, August 1971 | MR

[5] E. Lee, “Rational Bezier Representation for Conies”, SIAM, 1986, 3–27 | MR

[6] Carole Blank, Christophe Schlick, More accurate representation of conics, NURBS, Technical Report, LaBRI, France

[7] E. Dimas, D. Briassoulis, “3D geometric modelling based on NURBS: a review”, Advances in Engineering Software, 30 (1999), 741–751 | DOI

[8] X. Sheng, B. E. Hirsch, “Triangulation of trimmed surfaces in parametric space”, Computer Aided Design, 24:8 (1992), 437–444 | DOI | Zbl

[9] L. A. Piegl, M. A. Richard, “Tessellating trimmed NURBS surfaces”, Computer Aided Design, 27:1 (1995), 16–26 | DOI | Zbl

[10] J. C. Cuilliere, “An adaptive method for the automatic triangulation of 3D parametric surfaces”, Computer Aided Design, 30:2 (1998), 139–149 | DOI

[11] B. Hamann, P. Tsai, “A tessellation algorithm for the representation of trimmed NURBS surfaces with arbitrary trimming”, Computer Aided Design, 28:6–7 (1996), 461–72 | DOI | MR

[12] S. Kumar, D. Manocha, “Efficient rendering of trimmed NURBS surfaces?”, Computer Aided Design, 27:7 (1995), 509–521 | DOI | Zbl

[13] Les A Piegl, Wayne Tiller, “Geometry-based triangulation of trimmed NURBS surfaces?”, Computer Aided Design, 30:1 (1998), 11–18 | DOI

[14] G. V. V. Ravi Kumar et al., “Geometry based triangulation of multiple trimmed NURBS surfaces?”, Computer Aided Design, 33 (2001), 439–454 | DOI

[15] Pascal Jean Frey, Paul Louis Jeorge, Mesh Generation, Hermes Science Publishing, Oxford, 2000 | MR

[16] E. L. Kartasheva, “Instrumentalnye sredstva podgotovki i analiza dannykh dlya resheniya trekhmernykh zadach matematicheskoi fiziki”, Matem. modelirovanie, 9:7 (1997), 113–127 | Zbl

[17] F. Preparata, M. Shaimos, Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989 | MR | Zbl

[18] Gerald Farin, Curves and surfaces for computer aided geometric design: a practical guide, Academic Press Professional, Inc., San Diego, CA, USA, 1988 | MR | Zbl

[19] Hao Chen and Jonathan Bishop, “Delaunay Triangulation for Curved Surfaces”, 6th International Meshing Roundtable, Proceedings, 1997, 115–127

[20] Robert Haines, NURBS and triangular NURBS a transfer report, , 2001 http://people.man.ac.uk/~mbacprh/pages/data/XferReport.pdf

[21] Philip Fong, Hans-Peter Seidel, An Implementation of Triangular $B$-Spline Surfaces over Arbitrary Triangulation, http://citeseer.ist.psu.edu/fong93implementation.html

[22] Gunther Greiner, Hans-Peter Seidel, Modeling with Triangular $B$-Splines, Proc. ACM/IEEE Solid Modeling Symposium '93, http://citeseer.ist.psu.edu/greiner93modeling.html