Plane boundary problems of the nonlinear theory of elasticity Signorini's model derivation by means of complex variable theory
Matematičeskoe modelirovanie, Tome 18 (2006) no. 9, pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of the decision of the theory of elasticity plane boundary problems at the final (big) defomations has been offered. Regional problems of a Signorini's model, which describes the deflected mode of an elastic body at final deformations, are offered to be studied by means of complex structure introduction in the area of coordinates and movings. It allows to construct the approximate solutions, depended on two holomorphic functions, in the form of special holomorphic decomposition. This method allows to allocate the solution, providing the approximate come up to the boundary requirements, from the received solutions manifold and thus to estimate the sharpness of the equations satisfaction.
@article{MM_2006_18_9_a3,
     author = {A. I. Alexandrovich and A. A. Sheina},
     title = {Plane boundary problems of the nonlinear theory of elasticity {Signorini's} model derivation by means of complex variable theory},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_9_a3/}
}
TY  - JOUR
AU  - A. I. Alexandrovich
AU  - A. A. Sheina
TI  - Plane boundary problems of the nonlinear theory of elasticity Signorini's model derivation by means of complex variable theory
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 43
EP  - 53
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_9_a3/
LA  - ru
ID  - MM_2006_18_9_a3
ER  - 
%0 Journal Article
%A A. I. Alexandrovich
%A A. A. Sheina
%T Plane boundary problems of the nonlinear theory of elasticity Signorini's model derivation by means of complex variable theory
%J Matematičeskoe modelirovanie
%D 2006
%P 43-53
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_9_a3/
%G ru
%F MM_2006_18_9_a3
A. I. Alexandrovich; A. A. Sheina. Plane boundary problems of the nonlinear theory of elasticity Signorini's model derivation by means of complex variable theory. Matematičeskoe modelirovanie, Tome 18 (2006) no. 9, pp. 43-53. http://geodesic.mathdoc.fr/item/MM_2006_18_9_a3/

[1] A. I. Lure, Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[2] B. V. Shabat, Vvedenie v kompleksnyi analiz, T. 1, Nauka, M., 1976 | MR

[3] A. I. Aleksandrovich, E. V. Bulimova, Kompleksifikatsiya nekotorykh uravnenii matematicheskoi fiziki, Nauka: VTs RAN, M., 1998 | MR

[4] N. I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966

[5] A. I. Aleksandrovich, A. V. Gorlova, A. A. Demidova, D. F. Titorenko, Reshenie nekotrykh nelineinykh zadach teorii uprugosti v kompleksnykh peremennykh, Nauka: VTs RAN, M., 2004 | MR