Parametrization of the numeric solution of nonlinear
Matematičeskoe modelirovanie, Tome 18 (2006) no. 9, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some approach for numerical solution of boundary value problem (BVP) for system of nonlinear ordinary differential equations with nonlinear boundary conditions is proposed. The main idea of the methods consists in various combinations the shooting method and the continuation method with respect to a parameter, including the arclength. Such methods improve the standard methods of solving BVP and expand the class solvable problems. An example is considered.
@article{MM_2006_18_9_a0,
     author = {S. D. Krasnikov and E. B. Kuznetsov},
     title = {Parametrization of the numeric solution of nonlinear},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_9_a0/}
}
TY  - JOUR
AU  - S. D. Krasnikov
AU  - E. B. Kuznetsov
TI  - Parametrization of the numeric solution of nonlinear
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 3
EP  - 16
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_9_a0/
LA  - ru
ID  - MM_2006_18_9_a0
ER  - 
%0 Journal Article
%A S. D. Krasnikov
%A E. B. Kuznetsov
%T Parametrization of the numeric solution of nonlinear
%J Matematičeskoe modelirovanie
%D 2006
%P 3-16
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_9_a0/
%G ru
%F MM_2006_18_9_a0
S. D. Krasnikov; E. B. Kuznetsov. Parametrization of the numeric solution of nonlinear. Matematičeskoe modelirovanie, Tome 18 (2006) no. 9, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2006_18_9_a0/

[1] Krasnoselskii A. M., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[2] Keller H. B., Numerical methods for two-point boundary value problems, Ginn-Blaisdell, Waltham, 1968 | MR | Zbl

[3] Samoilenko A. M., Ronto N. I., Chislenno-analiticheskie metody issledovaniya reshenii kraevykh zadach, Naukova dumka, Kiev, 1986 | MR

[4] Roberts S. M., Shipman J. S., Two-point boundary value problems: shooting methods, Elsevier, New York, 1972 | MR

[5] Godunov S. K., “O chislennom reshenii kraevykh zadach dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, UMN, 16:3 (1961), 171–174 | MR | Zbl

[6] Cont S. D., “The Numerical Solutions of Linear Boundary Value Problems”, SIAM Rev., 3:8 (1966), 309–321 | DOI | MR

[7] Bellman R. E., Kalaba R. E., Quasilinearization and Nonlinear Boundary-Value Problems, American Elsevier Publishing Company, New York, 1965 | MR | Zbl

[8] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[9] Na T. Y., Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, 1979 | MR | MR

[10] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2002

[11] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[12] Lahaye M. E., “Une metode de resolution d'une categorie d'equations transcendentes”, Compter Rendus hebdomataires des seances de L' Academie des sciences, 198:21 (1934), 1840–1842

[13] Davidenko D. F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, DAN SSSR, 88:4 (1953), 601–602 | MR | Zbl

[14] Avvakumov S. N., Kiselev Yu. N., “Boundary Value Problem for Ordinary Differential Equations with Applications to Optimal Control”, Spectral and evolution problems, Proceedings of the tenth Crimean autumn mathematical school-symposium. V. 10, 2000, 147–155 | MR

[15] Avvakumov S. N., Kiselev Yu. N., Kraevaya zadacha dlya ODU i prilozheniya k optimalnomu upravleniyu, Report at SCI-2004 Conference, Orlando, Florida, USA, 2004

[16] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zhurn. vychisl. matem. i matem. fiz., 44:9 (2004), 1540–1551 | MR | Zbl

[17] Shalashilin V. I., Kuznetsov E. B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Kluwer Academic Publishers, Dordrecht-Boston-London, 2003 | MR | MR | Zbl

[18] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivoi iteratsionnym metodom”, Dokl. RAN, 396:6 (2004), 746–748 | MR | Zbl

[19] Kuznetsov E. B., Shalashilin V. I., “Zadacha Koshi kak zadacha prodolzheniya resheniya po nailuchshemu parametru”, Differentsialnye uravneniya, 30:6 (1994), 964–971 | MR | Zbl

[20] Kuznetsov E. B., Krasnikov S. D., “To numerical solution of singular perturbed equations transformed to the best argument”, Computational Science-ICCS 2003. International Conference, Proceedings Part II (Melburne-Melbourne-Australia, St.-Peterburg, Russia June 2003), Lecture Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg, 2003, 500–506 | MR | Zbl