The finite-size particle-in-cell method for numerical
Matematičeskoe modelirovanie, Tome 18 (2006) no. 8, pp. 5-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite-size particle-in-cell method for numerical modeling of pulsed high-energy density loadings on matter was developed. A mutual Lagrange-Eulerian representation of continuum used allows us to solve the problems with contact– and free–surfaces, as well as flows with strong deformations and strain rates. To calculate mixed cells we proceed from the assumption that pressures and temperatures are equal inside of a cell. Using a parallel SPMD implementation of the method we simulate the hypervelocity impact of lead spherical impactor on lead plate. The results of computer modeling were compared with experimental x-ray photographs.
@article{MM_2006_18_8_a1,
     author = {V. V. Kim and I. V. Lomonosov and A. V. Ostrik and V. E. Fortov},
     title = {The finite-size particle-in-cell method for numerical},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {18},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/}
}
TY  - JOUR
AU  - V. V. Kim
AU  - I. V. Lomonosov
AU  - A. V. Ostrik
AU  - V. E. Fortov
TI  - The finite-size particle-in-cell method for numerical
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 5
EP  - 11
VL  - 18
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/
LA  - ru
ID  - MM_2006_18_8_a1
ER  - 
%0 Journal Article
%A V. V. Kim
%A I. V. Lomonosov
%A A. V. Ostrik
%A V. E. Fortov
%T The finite-size particle-in-cell method for numerical
%J Matematičeskoe modelirovanie
%D 2006
%P 5-11
%V 18
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/
%G ru
%F MM_2006_18_8_a1
V. V. Kim; I. V. Lomonosov; A. V. Ostrik; V. E. Fortov. The finite-size particle-in-cell method for numerical. Matematičeskoe modelirovanie, Tome 18 (2006) no. 8, pp. 5-11. http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/