The finite-size particle-in-cell method for numerical
Matematičeskoe modelirovanie, Tome 18 (2006) no. 8, pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite-size particle-in-cell method for numerical modeling of pulsed high-energy density loadings on matter was developed. A mutual Lagrange-Eulerian representation of continuum used allows us to solve the problems with contact– and free–surfaces, as well as flows with strong deformations and strain rates. To calculate mixed cells we proceed from the assumption that pressures and temperatures are equal inside of a cell. Using a parallel SPMD implementation of the method we simulate the hypervelocity impact of lead spherical impactor on lead plate. The results of computer modeling were compared with experimental x-ray photographs.
@article{MM_2006_18_8_a1,
     author = {V. V. Kim and I. V. Lomonosov and A. V. Ostrik and V. E. Fortov},
     title = {The finite-size particle-in-cell method for numerical},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {18},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/}
}
TY  - JOUR
AU  - V. V. Kim
AU  - I. V. Lomonosov
AU  - A. V. Ostrik
AU  - V. E. Fortov
TI  - The finite-size particle-in-cell method for numerical
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 5
EP  - 11
VL  - 18
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/
LA  - ru
ID  - MM_2006_18_8_a1
ER  - 
%0 Journal Article
%A V. V. Kim
%A I. V. Lomonosov
%A A. V. Ostrik
%A V. E. Fortov
%T The finite-size particle-in-cell method for numerical
%J Matematičeskoe modelirovanie
%D 2006
%P 5-11
%V 18
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/
%G ru
%F MM_2006_18_8_a1
V. V. Kim; I. V. Lomonosov; A. V. Ostrik; V. E. Fortov. The finite-size particle-in-cell method for numerical. Matematičeskoe modelirovanie, Tome 18 (2006) no. 8, pp. 5-11. http://geodesic.mathdoc.fr/item/MM_2006_18_8_a1/

[1] F. Kh. Kharlou, “Chislennyi metod chastits v yacheikakh dlya zadach gidrodinamiki”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967

[2] O. M. Belotserkovskii, Yu. M. Davydov, “Nestatsionarnyi metod krupnykh chastits dlya gazodinamicheskikh raschetov”, Zh. vychisl. matem. i matem. fiz., 11:1 (1971), 182–207 | MR

[3] R. A. Jentry, R. E. Martin, B. J. Daly, “An Eulerian Differencing Method for Unsteady compressible Flow Problems”, J. Comput. Phys., 1:1 (1966), 87–118 | DOI

[4] R. Morz, Vychislitelnye metody v fizike plazmy, Mir, M., 1974

[5] V. E. Petrenko, E. V. Vorozhtsev, “Primenenie chastits sloev pri raschetakh po metodu chastits v yacheikakh”, Chisl. metody mekhaniki sploshnoi sredy, 4:2 (1973), 132–141

[6] V. E. Petrenko, G. A. Sapozhnikov, “Ob usilenii ustoichivosti metoda chastits v yacheikakh dlya techenii vyazkoi zhidkosti”, Chisl. metody mekhaniki sploshnoi sredy, 7:4 (1976), 130–148

[7] V. F. Dyachenko, “Ob novom metode chislennogo resheniya nestatsionarnykh zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 5:4 (1965), 680–688 | MR

[8] V. A. Agureikin, B. P. Kryukov, “Metod individualnykh chastits dlya rascheta techenii mnogokomponentnykh sred s bolshimi deformatsiyami”, Chislennye metody mekhaniki sploshnoi sredy, 17, no. 1, Novosibirsk, 1986, 17 | Zbl

[9] A. V. Ostrik, Termomekhanicheskoe deistvie rentgenovskogo izlucheniya na mnogosloinye geterogennye pregrady v vozdukhe, NTTs Informtekhnika, M., 2003

[10] V. A. Agureikin, S. I. Anisimov, A. V. Bushman i dr., “Teplofizicheskie i gazodinamicheskie problemy protivometeoritnoi zaschity kosmicheskogo apparata “Vega””, Teplofizika vysokikh temperatur, 22:5 (1984), 964–983

[11] A. V. Bushman, I. V. Lomonosov, V. E. Fortov, Uravneniya sostoyaniya metallov pri vysokikh plotnostyakh energii, Chernogolovka, 1992

[12] D. J. Liquornik, Results by G. W. Pomykal. Digitized data for Delco test 4007, lead-on-lead, Lawrence Livermore Laboratory Report DDV-86-0010, 1986