On one solution method of the seismic tomography problems
Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 101-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on tomographic approach the solution of seismology inverse kinematic problem is proposed in the article. Considered approach on the one hand is based on the regularity of rays field on the other hand permits to avoid the system of straight lines that is used in Radon's tomography. For finding the geomedium velocity model the method of nonlinear equation linearization is applied. By analogy with the solution of Radon's problem using the projection theorem the numerical algorithm is defined. In case of homogeneous medium this algorithm have all the properties of projection scheme. Two computational experiments of vertical seismic profiling and crosswell tomography modeling were performed for verification of proposed method.
@article{MM_2006_18_7_a8,
     author = {N. V. Kutsenko},
     title = {On one solution method of the seismic tomography problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--114},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a8/}
}
TY  - JOUR
AU  - N. V. Kutsenko
TI  - On one solution method of the seismic tomography problems
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 101
EP  - 114
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a8/
LA  - ru
ID  - MM_2006_18_7_a8
ER  - 
%0 Journal Article
%A N. V. Kutsenko
%T On one solution method of the seismic tomography problems
%J Matematičeskoe modelirovanie
%D 2006
%P 101-114
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_7_a8/
%G ru
%F MM_2006_18_7_a8
N. V. Kutsenko. On one solution method of the seismic tomography problems. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 101-114. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a8/

[1] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[2] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[4] Goncharskii A. V., Kochikov I. V., Matvienko A. N., Rekonstruktivnaya obrabotka i analiz izobrazhenii v zadachakh vychislitelnoi diagnosti, Izd-vo MGU, M., 1993

[5] Aki K., Richards P. G., Quantitative seismology, W. H. Freeman and Co, 1980

[6] Kravtsov Yu. A., Orlov Yu. I., Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980 | MR

[7] Dablain M. A., “The application of higher-order differencing to the scalar wave equation”, Geophysics, 51 (1986), 54–66 | DOI

[8] Vidale J., “Finite-difference calculation of travel times”, Bull. Seis. Soc. Am., 78 (1988), 2062–2076

[9] Van Trier J., Symes W. W., “Upwind finite-difference calcilation of traveltimes”, Geophysics, 56 (1991), 812–821 | DOI

[10] Le-Wei Mo, Harris J. M., “Finite-difference calculation of direct-arrival traveltimes using the eikonal equation”, Geophysics, 67 (2002), 1270–1274 | DOI

[11] Qian J., Symes W. W., “An adaptive finite-difference method for traveltimes and amplitudes”, Geophysics, 67 (2002), 167–176 | DOI

[12] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[13] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo Mosk. un-ta, M., 1994