Integral transforms associated with orthogonal finite functions in the spectral analysis of signals
Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 93-100
Cet article a éte moissonné depuis la source Math-Net.Ru
The integral OFF-transforms based on the use of orthogonal finite functions (OFF) are considered. Inverse discrete and integral OFF- transforms are obtained. Their effectiveness is revealed in the tasks of signals restoring and noise reduction. On the basis of proposed OFF complex OFF (COFF) and integral COFF- transforms are constructed. A study of effectiveness OFF- and KOFF- transforms in the tasks of the spectral analysis of the mathematical models of signals is conducted on the basis of comparison with the integral wavelet-transforms.
@article{MM_2006_18_7_a7,
author = {V. L. Leont'ev and E. A. Rikov},
title = {Integral transforms associated with orthogonal finite functions in the spectral analysis of signals},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {93--100},
year = {2006},
volume = {18},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a7/}
}
TY - JOUR AU - V. L. Leont'ev AU - E. A. Rikov TI - Integral transforms associated with orthogonal finite functions in the spectral analysis of signals JO - Matematičeskoe modelirovanie PY - 2006 SP - 93 EP - 100 VL - 18 IS - 7 UR - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a7/ LA - ru ID - MM_2006_18_7_a7 ER -
V. L. Leont'ev; E. A. Rikov. Integral transforms associated with orthogonal finite functions in the spectral analysis of signals. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 93-100. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a7/
[1] Leontev V. L., Ortogonalnye finitnye funktsii i chislennye metody, UlGU, Ulyanovsk, 2003
[2] Leontev V. L., “Ob ortogonalnykh finitnykh funktsiyakh i o chislennykh metodakh, svyazannykh s ikh primeneniem”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:3 (2002), 497–504
[3] Ango A., Matematika dlya elektro- i radioinzhenerov, Nauka, M., 1976
[4] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001
[5] Koronovskii A. A., Khramov A. E., Nepreryvnyi veivletnyi analiz i ego prilozheniya, Fizmatlit, M., 2003