Simulation of the contact bend of complex form slabs
Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 82-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Contact interaction of plates of a complicated shape resting on an elastic base of a 3D continuum type is considered. The plate's stressed-strained state is studied by the finite element method, and its contact interaction with the elastic half-space in analyzed by using boundary (contact) elements. During finite element solution of the problem of the plate's contact bending, the reaction pressure in the knots of a triangular mesh is determined by dual partitioning the contact domain into Dirichlet–Voronoi polygonal cells. The numerical examples considered illustrate the efficiency of the procedure developed for investigating the contact bending of the plates of the complicated shape.
@article{MM_2006_18_7_a6,
     author = {S. M. Aleynikov and I. E. Agapov},
     title = {Simulation of the contact bend of complex form slabs},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a6/}
}
TY  - JOUR
AU  - S. M. Aleynikov
AU  - I. E. Agapov
TI  - Simulation of the contact bend of complex form slabs
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 82
EP  - 92
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a6/
LA  - ru
ID  - MM_2006_18_7_a6
ER  - 
%0 Journal Article
%A S. M. Aleynikov
%A I. E. Agapov
%T Simulation of the contact bend of complex form slabs
%J Matematičeskoe modelirovanie
%D 2006
%P 82-92
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_7_a6/
%G ru
%F MM_2006_18_7_a6
S. M. Aleynikov; I. E. Agapov. Simulation of the contact bend of complex form slabs. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 82-92. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a6/

[1] Aleynikov S. M., Nekrasova N. N., “Contact problem for orthotropic foundation slabs with consideration of deformation peculiarities of spatial and nonhomogeneous bases”, Studia Geotechnica et Mechanica, 20:1–2 (1998), 63–104

[2] Aleinikov S. M., Metod granichnykh elementov v kontaktnykh zadachakh dlya uprugikh prostranstvenno neodnorodnykh osnovanii, Izd-vo ASV, M., 2000

[3] Aleinikov S. M., Sedaev A. A., “Dvoistvennye setki i ikh primenenie v metode granichnykh elementov”, Zhurn. vychisl. matem. i matem. fiz, 1999, no. 2, 239–253 | MR | Zbl

[4] Novotny B., Hanuska A., “Pravouhla dosk na pruznom polpriestore”, Staveb. Cas., 35 (1987), 359–375 | MR

[5] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1984 | MR

[6] Sekulovich M., Metod konechnykh elementov, Stroiizdat, M., 1993

[7] Timoshenko S. P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975