Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_7_a2, author = {E. N. Aristova and D. F. Baydin and V. Ya. Gol'din}, title = {Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to {Vladimirov's} variables}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--52}, publisher = {mathdoc}, volume = {18}, number = {7}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/} }
TY - JOUR AU - E. N. Aristova AU - D. F. Baydin AU - V. Ya. Gol'din TI - Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables JO - Matematičeskoe modelirovanie PY - 2006 SP - 43 EP - 52 VL - 18 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/ LA - ru ID - MM_2006_18_7_a2 ER -
%0 Journal Article %A E. N. Aristova %A D. F. Baydin %A V. Ya. Gol'din %T Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables %J Matematičeskoe modelirovanie %D 2006 %P 43-52 %V 18 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/ %G ru %F MM_2006_18_7_a2
E. N. Aristova; D. F. Baydin; V. Ya. Gol'din. Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 43-52. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/
[1] Vladimirov V. S., “Chislennoe reshenie kineticheskogo uravneniya dlya sfery”, Vychislitelnaya matematika, 1958, no. 3, 3–33 | Zbl
[2] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiziki, 4:6 (1964), 1078–1087 | MR
[3] Aristova E. N., Goldin V. Ya., Dementev A. S., “Raznostnoe reshenie dvumernogo statsionarnogo uravneniya perenosa v peremennykh Vladimirova”, Matem. modelirovanie, 18:6 (2006), 44–52 | MR | Zbl
[4] Vladimirov V. S., Zhurn. vychisl. mat. i mat. fiz., 8:4 (1968), M. | MR
[5] Chetverushkin B. N., “Postroenie testov i nekotorye voprosy chislennogo resheniya uravneniya perenosa neitronov”, Vychislitelnye metody v teorii perenosa, ed. G. I. Marchuk, Atomizdat, M., 1969, 189–201 | MR
[6] Kalitkin N. N., Kuzmina L. V., “Ob estestvennykh interpolyatsionnykh splainakh”, Matem. modelirovanie, 6:4 (1994), 77–114 | MR | Zbl
[7] Goldin V. Ya., Danilova G. V., Kalitkin N. N., “Chislennoe integrirovanie mnogomernogo uravneniya perenosa”, Chislennye metody resheniya zadach matematicheskoi fiziki, M., 1966, 190–193
[8] Goldin V. Ya., Kalitkin N. N., Shishova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zhurn. vychisl. mat. i mat. fiz., 5:5. (1965), 938–944, M. | MR
[9] Bakirova M. I., Karpov V. Ya., Mukhina M. I., “Kharakteristiko-interpolyatsionnyi metod resheniya uravneniya perenosa”, Zh. vychisl. matem. i matem. fiziki, 4:6 (1987), 1141–1148 | MR
[10] Troschiev V. E., Nifanova A. V., Troschiev Yu. V., “Kharakteristicheskii podkhod k approksimatsii zakonov sokhraneniya v kineticheskikh uravneniyakh perenosa izluchenii”, DAN, 394:4 (2004), 454–458 | MR