Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables
Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method for numerical solving of 2D steady transport equation on the basis of transition to the Vladimirov's variables have been suggested. The spatial and angular meshes are rigidly connected in classical variant of Vladimirov's method, that is not convenient in many practical cases. The algorithm for equation solving is suggested with independent construction of these meshes. It allows explicitly resolve the structure of all logarithmical discontinuities of solution, which is immanent for problems with spherical and cylindrical geometry. Two variants of the method has been suggested: pure characteristical one and conservative characteristical method. It has been shown for test problem with exact solution that for rough meshes conservative characteristical method allows to construct solution of high accuracy, especially for quasi-diffusion tensor.
@article{MM_2006_18_7_a2,
     author = {E. N. Aristova and D. F. Baydin and V. Ya. Gol'din},
     title = {Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to {Vladimirov's} variables},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - D. F. Baydin
AU  - V. Ya. Gol'din
TI  - Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 43
EP  - 52
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/
LA  - ru
ID  - MM_2006_18_7_a2
ER  - 
%0 Journal Article
%A E. N. Aristova
%A D. F. Baydin
%A V. Ya. Gol'din
%T Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables
%J Matematičeskoe modelirovanie
%D 2006
%P 43-52
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/
%G ru
%F MM_2006_18_7_a2
E. N. Aristova; D. F. Baydin; V. Ya. Gol'din. Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 43-52. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/

[1] Vladimirov V. S., “Chislennoe reshenie kineticheskogo uravneniya dlya sfery”, Vychislitelnaya matematika, 1958, no. 3, 3–33 | Zbl

[2] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiziki, 4:6 (1964), 1078–1087 | MR

[3] Aristova E. N., Goldin V. Ya., Dementev A. S., “Raznostnoe reshenie dvumernogo statsionarnogo uravneniya perenosa v peremennykh Vladimirova”, Matem. modelirovanie, 18:6 (2006), 44–52 | MR | Zbl

[4] Vladimirov V. S., Zhurn. vychisl. mat. i mat. fiz., 8:4 (1968), M. | MR

[5] Chetverushkin B. N., “Postroenie testov i nekotorye voprosy chislennogo resheniya uravneniya perenosa neitronov”, Vychislitelnye metody v teorii perenosa, ed. G. I. Marchuk, Atomizdat, M., 1969, 189–201 | MR

[6] Kalitkin N. N., Kuzmina L. V., “Ob estestvennykh interpolyatsionnykh splainakh”, Matem. modelirovanie, 6:4 (1994), 77–114 | MR | Zbl

[7] Goldin V. Ya., Danilova G. V., Kalitkin N. N., “Chislennoe integrirovanie mnogomernogo uravneniya perenosa”, Chislennye metody resheniya zadach matematicheskoi fiziki, M., 1966, 190–193

[8] Goldin V. Ya., Kalitkin N. N., Shishova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zhurn. vychisl. mat. i mat. fiz., 5:5. (1965), 938–944, M. | MR

[9] Bakirova M. I., Karpov V. Ya., Mukhina M. I., “Kharakteristiko-interpolyatsionnyi metod resheniya uravneniya perenosa”, Zh. vychisl. matem. i matem. fiziki, 4:6 (1987), 1141–1148 | MR

[10] Troschiev V. E., Nifanova A. V., Troschiev Yu. V., “Kharakteristicheskii podkhod k approksimatsii zakonov sokhraneniya v kineticheskikh uravneniyakh perenosa izluchenii”, DAN, 394:4 (2004), 454–458 | MR