Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_7_a2, author = {E. N. Aristova and D. F. Baydin and V. Ya. Gol'din}, title = {Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to {Vladimirov's} variables}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--52}, publisher = {mathdoc}, volume = {18}, number = {7}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/} }
TY - JOUR AU - E. N. Aristova AU - D. F. Baydin AU - V. Ya. Gol'din TI - Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables JO - Matematičeskoe modelirovanie PY - 2006 SP - 43 EP - 52 VL - 18 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/ LA - ru ID - MM_2006_18_7_a2 ER -
%0 Journal Article %A E. N. Aristova %A D. F. Baydin %A V. Ya. Gol'din %T Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables %J Matematičeskoe modelirovanie %D 2006 %P 43-52 %V 18 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/ %G ru %F MM_2006_18_7_a2
E. N. Aristova; D. F. Baydin; V. Ya. Gol'din. Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 43-52. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a2/