Characteristic tube approach to analysis of DSn-method and to constructing new finite-difference schemes on Sn-nets
Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 24-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper DSn-method for spherically symmetric transport equation is analyzed. It is shown to be split into a scheme for an ordinary differential equation (ODE) and a scheme for distributing the total flux over the unilluminated cell sides. The both are nonmonotone and nonpositive. Basing on the idea of splitting, a new approach to constructing finite-difference schemes for spherically symmetric transport equation on arbitrary nets is formulated and proved. In this approach the characteristic tubes conservative method is generalized on arbitrary nets, in part the Sn-nets. A new value—the full particle flux in the tube—is introduced. It gives an opportunity to pass from a partial differential equation (ODE) along 'average' characteristic in the Sn-cell. The average ODE obtained is treated as a balance equation of particles in the cell. The ODE is approximated by the monotony second order schemes. The full flux obtained is positive. It should be conservatively distributed oder the unilluminated Sn-cell sides in corresponding with additional approximation requirements. In the paper some variants of the full flux distribution are shortly discussed and the numerical calculations are given.
@article{MM_2006_18_7_a1,
     author = {V. E. Troshchiev and A. V. Nifanova},
     title = {Characteristic tube approach to analysis of {DSn-method} and to constructing new finite-difference schemes on {Sn-nets}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--42},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a1/}
}
TY  - JOUR
AU  - V. E. Troshchiev
AU  - A. V. Nifanova
TI  - Characteristic tube approach to analysis of DSn-method and to constructing new finite-difference schemes on Sn-nets
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 24
EP  - 42
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a1/
LA  - ru
ID  - MM_2006_18_7_a1
ER  - 
%0 Journal Article
%A V. E. Troshchiev
%A A. V. Nifanova
%T Characteristic tube approach to analysis of DSn-method and to constructing new finite-difference schemes on Sn-nets
%J Matematičeskoe modelirovanie
%D 2006
%P 24-42
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_7_a1/
%G ru
%F MM_2006_18_7_a1
V. E. Troshchiev; A. V. Nifanova. Characteristic tube approach to analysis of DSn-method and to constructing new finite-difference schemes on Sn-nets. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 24-42. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a1/

[1] B. Karlson, Dzh. Bell, “Reshenie transportnogo uravneniya $Sn$-metodom”, Fizika yadernykh reaktorov, Atomizdat, M., 1959, 408–432

[2] B. Karlson, “Chislennoe reshenie zadach kineticheskoi teorii neitronov”, Teoriya yadernykh reaktorov, Gosatomizdat, M., 1963, 243–258

[3] V. S. Vladimirov, “Chislennoe reshenie kineticheskogo uravneniya dlya sfery”, Vychislitelnaya matematika, 1958, no. 3, 3–33 | Zbl

[4] A. V. Nikiforova, V. A. Tarasov, V. E. Troschiev, “O reshenii kineticheskikh uravnenii divergentnym metodom kharakteristik”, ZhVM i MF, 12:4 (1972), 1041–1048 | MR | Zbl

[5] A. A. Samarskii, “Pryamoi raschet moschnosti vzryva”, Nauka i obschestvo: istoriya sovetskogo atomnogo proekta (40-e–50-e gody), Mezhdunarodnyi simpozium. T. 1 (Dubna, 14–17 maya 1996 g.), 1997, 214–222

[6] V. Ya. Goldin, “Metody rascheta perenosa neitronov i goreniya v termoyadernom izdelii (1948–1960 gg.)”, Nauka i obschestvo: istoriya sovetskogo atomnogo proekta (40-e–50-e gody), Mezhdunarodnyi simpozium. T. 2 (Dubna, 14–17 maya 1996 g.), 1999, 497–501

[7] V. S. Vladimirov, Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. Matem. in-ta AN SSSR, 61, 1961 | MR

[8] G. I. Marchuk, Chislennye metody rascheta yadernykh reaktorov, Atomizdat, M., 1958 | Zbl

[9] V. E. Troschiev, “O matematicheskikh svoistvakh $Sn$-metodov resheniya kineticheskikh uravnenii”, ZhVM i MF, 15:5 (1975), 1209–1221 | MR

[10] L. P. Bass, A. M. Voloschenko, T. A. Germogenova, Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPM AN SSSR, M., 1986

[11] G. I. Marchuk, Metody rascheta yadernykh reaktorov, Gosatomizdat, M., 1961

[12] G. I. Marchuk, V. I. Lebedev, Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[13] V. A. Elesin, V. E. Troschiev, V. F. Yudintsev, “Razvitie chislennykh metodov i programm rascheta odnomernykh spektralnykh zadach perenosa teplovogo izlucheniya vo VNIIEF”, VANT, Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 2002, no. 1, 11–28

[14] R. Rikhtmaier, K. Morton, Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972

[15] V. E. Troschiev, V. A. Shumilin, “Raznostnaya skhema resheniya dvumernogo uravneniya perenosa na neregulyarnykh chetyrekhugolnykh setkakh”, ZhVM i MF, 26:2 (1986), 230–241 | MR | Zbl

[16] N. P. Pleteneva, R. M. Shagaliev, “Approksimatsiya dvumernogo uravneniya perenosa na chetyrekhugolnykh i mnogougolnykh prostranstvennykh setkakh po raznostnoi skheme s rasshirennym shablonom”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1989, no. 3, 34–40

[17] B. Karlson, “A method of characteristics and other improvements in solution methods for the transport equation”, Nuclear Science and Engineering, 61 (1976), 408–425

[18] V. A. Elesin, V. E. Troschiev, V. F. Yudintsev, V. .I. Fedyanin, “Chislennaya metodika i organizatsiya programmy dlya resheniya mnogogruppovogo nestatsionarnogo kineticheskogo uravneniya”, Kompleksy programm matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1972, 18–23

[19] V. Ya. Goldin, A. V. Kolpakov, A. V. Misyurev, Reshenie nestatsionarnogo uravneniya perenosa bez yavnogo vydeleniya fronta, preprint No 68, IPM AN SSSR, M., 1983 | MR

[20] V. E. Troschiev, A. V. Nifanova, Yu. V. Troschiev, “Kharakteristicheskii podkhod k approksimatsii zakonov sokhraneniya v kineticheskikh uravneniyakh perenosa izluchenii”, DAN, 394:4 (2004), 454–458 | MR

[21] E. V. Groshev, A. M. Pastushenko, V. F. Yudintsev, “Ob odnoi trekhtochechnoi raznostnoi skheme s vesovym mnozhitelem dlya uravneniya perenosa”, Voprosy atomnoi nauki i tekhniki. Ser. Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1985, no. 2, 87–96

[22] V. E. Troschiev, A. V. Nifanova, Postroenie i issledovanie raznostnykh skhem dlya uravneniya perenosa pervogo i vtorogo poryadka v ploskom sloe, preprint No 0052-A, TRINITI, Troitsk, 1999

[23] A. V. Nifanova, V. E. Troschiev, “Nelineinaya monotonnaya skhema tipa $DSn$-metoda dlya uravneniya perenosa”, Nauchnaya sessiya MIFI-2001, sbornik nauchnykh trudov, t. 7, 2001, 85

[24] V. E. Troschiev, Yu. V. Troschiev, “Monotonnye raznostnye skhemy s vesom dlya uravneniya perenosa v ploskom sloe”, Matem. modelirovanie, 15:1 (2003), 3–13 | MR | Zbl

[25] O. V. Butneva, Yu. M. Matveev, “Chislennoe sravnenie diskretnoi i nepreryvnoi approksimatsii $Sn$-metoda resheniya sfericheski-simmetrichnogo uravneniya perenosa”, VANT, Seriya: Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1983, no. 3, 36–40