Solution of time-dependant problems of gas and fluid mechanics on unstructured grids
Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite volume method for discretisation of time-dependant Navier–Stokes equations on unstructured grids is developed, and its outlooks for improvememnts are discussed. The features of discretisation of inviscid and viscous fluxes and time derivatives are considered. The possibilities of the approach developed are shown on the solution of some problems connected with the simulation of time-dependant flows in the gas turbines engines.
@article{MM_2006_18_7_a0,
     author = {K. N. Volkov},
     title = {Solution of time-dependant problems of gas and fluid mechanics on unstructured grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_7_a0/}
}
TY  - JOUR
AU  - K. N. Volkov
TI  - Solution of time-dependant problems of gas and fluid mechanics on unstructured grids
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 3
EP  - 23
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_7_a0/
LA  - ru
ID  - MM_2006_18_7_a0
ER  - 
%0 Journal Article
%A K. N. Volkov
%T Solution of time-dependant problems of gas and fluid mechanics on unstructured grids
%J Matematičeskoe modelirovanie
%D 2006
%P 3-23
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_7_a0/
%G ru
%F MM_2006_18_7_a0
K. N. Volkov. Solution of time-dependant problems of gas and fluid mechanics on unstructured grids. Matematičeskoe modelirovanie, Tome 18 (2006) no. 7, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2006_18_7_a0/

[1] Barth T. J., Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations, VKI Lecture Series, Von Karman Institute for Fluid Dyanmics, Belgium, 1994

[2] Jameson A., Mavripils D., “Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh”, AIAA, 1985, 0435

[3] Morgan K., Perire J., Peiro J., Hassan O., “The computation of three dimensional flows using unstructured grids”, Computational Methods in Applied Mechanics Engineering, 87 (1991), 335–352 | DOI | Zbl

[4] Hirsch C., Numerical computation of internal and external flows, John Wiley and Sons, New York, 1990 | Zbl

[5] Roe P.L., “Approximate Riemann solvers, parameter vectors, and difference schemes”, Journal of Computational Physics, 43 (1981), 357–372 | DOI | MR | Zbl

[6] Luo H., Baum J. D., Lohner R., “Egde-based finite element scheme for the Euler equations”, AIAA Journal, 32:6 (1994), 1183–1190 | DOI | Zbl

[7] Crumpton P. I., Moinier P., Giles M. B., “An unstructured algorithm for high Reynolds number flows on highly stretched grids”, Proceedings of the 10th International Conference on Numerical Methods for Laminar and Turbulent Flows (21–25 July 1997, University of Wales, Swansea), 1997 | Zbl

[8] Jameson A., “Transonic aerofoil calculations using the Euler equations”, Proceedings of the IMA Conference on Numerical Methods in Aeronautical Fluid Dynamics (March 1981, Reading, United Kingdom), ed. P. L. Roe, Academic Press, 1982, 289–308

[9] Crumpton P. I., A cell vertex method for 3d Navier–Stokes solutions, Technical Report of the Oxford University Computing Laboratory

[10] Moinier P., Giles M. B., “Stability analysis of preconditioned approximations of the Euler equations on unstructured meshes”, Journal of Computational Physics, 178 (2002), 498–519 | DOI | MR | Zbl

[11] Crumpton P.I., Giles M. B., “Implicit time accurate solutions on unstructured dynamic grids”, AIAA, 1995, 1671

[12] Brandt A., “Multi-level adaptive solutions to boundary value problems”, Mathematics of Computation, 31 (1977), 46–50 | DOI | MR

[13] Hackbusch W., “Multi-grid convergence theory”, Lecture Notes in Mathematics, 960, Springer-Verlag, Berlin, 1982, 177–219 | MR

[14] Weiss J., Smith W., “Preconditioning applied to variable and constant density flows”, AIAA Journal, 33:11 (1995), 2050–2062 | DOI

[15] Spalart P. R., Allmaras S. R., “A one equation turbulence model for aerodynamic flows”, AIAA, 1992, 0439

[16] Fransson T. H., Verdon J. M., “Standard configurations for unsteady flow through vibrating axial-flow turbo-machine-cascades”, Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines and Propellers, Springer-Verlay, New York, 1993, 859–889

[17] Verdon J. M., Linearized unsteady aerodynamic theory, United Technologies Research Center Report, 1987, No R85-151774-1

[18] Lawrence C., Spyropoulos E., Reddy T. S. R., Unsteady cascade aerodynamic response using a multiphysics simulation code, NASA Report, 2000, No TM 2000-209635