A technique to calculate local hydraulic resistance in 2D and 3D channel geometries
Matematičeskoe modelirovanie, Tome 18 (2006) no. 6, pp. 109-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper offers a technique to calculate local hydraulic resistance in 2D and 3D channel geometries. The turbulent flow is described with Prandtl turbulent viscosity model with a single empirical constant which defines the turbulent viscosity coefficient. The technique is implemented in the hydrodynamic code MAH-3. 2D and 3D calculations were done to simulate the steady flow of almost incompressible gas through channels of different geometries modeling local hydraulic resistance of different types. For the fixed value of the empirical constant selected for the diffuser, the calculated resistance coefficients agree well with reference data.
@article{MM_2006_18_6_a8,
     author = {M. G. Anuchin and N. N. Anuchina and V. I. Volkov and V. A. Gordeychuk and N. S. Eskov and O. M. Kozyrev},
     title = {A technique to calculate local hydraulic resistance in {2D} and {3D} channel geometries},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--126},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_6_a8/}
}
TY  - JOUR
AU  - M. G. Anuchin
AU  - N. N. Anuchina
AU  - V. I. Volkov
AU  - V. A. Gordeychuk
AU  - N. S. Eskov
AU  - O. M. Kozyrev
TI  - A technique to calculate local hydraulic resistance in 2D and 3D channel geometries
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 109
EP  - 126
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_6_a8/
LA  - ru
ID  - MM_2006_18_6_a8
ER  - 
%0 Journal Article
%A M. G. Anuchin
%A N. N. Anuchina
%A V. I. Volkov
%A V. A. Gordeychuk
%A N. S. Eskov
%A O. M. Kozyrev
%T A technique to calculate local hydraulic resistance in 2D and 3D channel geometries
%J Matematičeskoe modelirovanie
%D 2006
%P 109-126
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_6_a8/
%G ru
%F MM_2006_18_6_a8
M. G. Anuchin; N. N. Anuchina; V. I. Volkov; V. A. Gordeychuk; N. S. Eskov; O. M. Kozyrev. A technique to calculate local hydraulic resistance in 2D and 3D channel geometries. Matematičeskoe modelirovanie, Tome 18 (2006) no. 6, pp. 109-126. http://geodesic.mathdoc.fr/item/MM_2006_18_6_a8/

[1] Agoskin I. I., Dmitriev G. T., Pikalov F. I., Gidravlika, Energiya, M., 1964

[2] Truboprovodnye sistemy energetiki: modeli, prilozheniya, informatsionnye tekhnologii, ed. prof. M. G. Sukharev, GUP Izdatelstvo “Neft i gaz”, Moskva, 2000

[3] Razvitie kompyuternykh kompleksov modelirovaniya, optimizatsii rezhimov raboty sistem gazosnabzheniya i ikh rol v dispetcherskom upravlenii tekhnologicheskimi protsessami v gazovoi otrasli, Materialy 1-oi Mezhdunarodnoi nauchno-tekhnicheskoi konferentsiya, OOO “IRTs Gazprom”, Moskva, 2004

[4] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika. Chast I, Nauka, M., 1965

[5] Rodi V., “Modeli turbulentnosti okruzhayuschei sredy”, Metody rascheta turbulentnykh techenii, ed. V. Kolman, Mir, M., 1984

[6] Anuchina N. N., Volkov V. J., Gordeychuk V. A., Es'kov N. S., Ilytina O. S., Kozurev O. M., “Numerical simulation of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAX-3 code”, Journal of Computational and Applied Mathematics, 168 (2004), 11–20 | DOI | MR | Zbl

[7] Anuchina N. N., Volkov V. I., Eskov N. S., Ilyutina O. S., Kozyrev O. M., “Dvumernoe i trekhmernoe modelirovanie razvitiya neustoichivosti Releya-Teilora dlya tsilindricheskoi i sfericheskoi geometrii”, Matematicheskoe modelirovanie, 16:2 (2004), 69–86 | MR | Zbl

[8] Mellor G. L., Yamada T., “Development of a turbulence closure model for geophysical fluid problems”, Reviews of Geophysics and Space Physics, 20:4 (1982), 851–875 | DOI

[9] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1977 | MR

[10] Charnyi I. A., Neustanovivsheesya dvizhenie realnoi zhidkosti v trubakh, Nedra, M., 1975

[11] Anuchina N. N., Volkov V. J., Es'kov N. S., A method for numerical simulation of contact surface with high distortions, Proceedings of the 7th International Workshop on The Physics of Compressible Turbulent Mixing (5–9 July 1999, St.-Petersburg, Russia)

[12] aPracht W. E. “Calculating of three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh”, J. of Comput. Physics, 17:3 (1975)

[13] Altshul A. D., Kiselev P. G., Gidravlika i aerodinamika, Izd. literatury po stroitelstvu, M., 1965