Transportation process of relativistic electron beam in gaz-plasma mediums and longitudinal magnetic field
Matematičeskoe modelirovanie, Tome 18 (2006) no. 6, pp. 29-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The transportation modeling problem of relativistic electron beam in gaz-plasma medium and external longitudinal magnetic field is examined. The kinetic equation of the distribution function for quasistationary rotationally beams of relativistic electrons in paraxial approximation as well as a lack of collective azimuth movements is deduced. Preceding from this one the non-linear system of integral and differential equations for moments of the distribution function till second order inclusive is deduced. The obtained system is solving numerically in conformity with the focusing problem of electronic beam. The focusing is provided with using of external longitudinal magnetic field as well as presence of medium density gradient in to which the beam is injected. The system of differential equations is deduced by integration of moments ones through the coordinate space taking into account some approximations. The obtained equations describe integral features of the electron beams, which are used for the first approximate description of its transportation.
@article{MM_2006_18_6_a2,
     author = {G. V. Kvitko and K. S. Latyshev},
     title = {Transportation process of relativistic electron beam in gaz-plasma mediums and longitudinal magnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_6_a2/}
}
TY  - JOUR
AU  - G. V. Kvitko
AU  - K. S. Latyshev
TI  - Transportation process of relativistic electron beam in gaz-plasma mediums and longitudinal magnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 29
EP  - 43
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_6_a2/
LA  - ru
ID  - MM_2006_18_6_a2
ER  - 
%0 Journal Article
%A G. V. Kvitko
%A K. S. Latyshev
%T Transportation process of relativistic electron beam in gaz-plasma mediums and longitudinal magnetic field
%J Matematičeskoe modelirovanie
%D 2006
%P 29-43
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_6_a2/
%G ru
%F MM_2006_18_6_a2
G. V. Kvitko; K. S. Latyshev. Transportation process of relativistic electron beam in gaz-plasma mediums and longitudinal magnetic field. Matematičeskoe modelirovanie, Tome 18 (2006) no. 6, pp. 29-43. http://geodesic.mathdoc.fr/item/MM_2006_18_6_a2/

[1] Cherchinyani K., Matematicheskie metody v kineticheskoi teorii gazov, Mir, M., 1973, 495 pp. | MR

[2] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1978, 331 pp.

[3] Gred G., “O kineticheskoi teorii razrezhennykh gazov”, Mekhanika, 14, no. 4, IL, M., 1952, 71–94

[4] Didenko A. N., Grigorev V. P., Usov Yu. P., Moschnye elektronnye puchki i ikh primenenie, Atomizdat, M., 1977, 277 pp.

[5] Rukhadze A. A., Bogdankevich L. S., Rosinskii S. E., Rukhlin V. G., Fizika silnotochnykh relyativistskikh elektronnykh puchkov, Atomizdat, M., 1980, 68 pp.

[6] Arsenev D. A., Grudnitskii V. G., Komov A. L., Rygalin V. N., “Chislennye metody modelirovaniya REP”, Kollektivnye metody uskoreniya i puchkovo-plazmennye vzaimodeistviya. Sbornik nauchnykh trudov RTI AN SSSR, M., 1980, 131–140

[7] Kvitko G. V., Latyshev K. S., “Modelirovanie protsessov transportirovki puchkov zaryazhennykh chastits v priblizhenii Fokkera-Planka”, Vestnik KGU, 1–2, Kaliningrad, 2005, 59–65

[8] Kvitko G. V., “Matematicheskoe modelirovanie potokov relyativistskikh zaryazhennykh chastits”, Doklady mezhdunarodnogo matematicheskogo seminara, posvyaschennogo 140-letiyu D. Gilberta, KGU, Kaliningrad, 2004, 291–298

[9] Lee E. P., Cooper R. K., Part. Accel., 7:1 (1976), 83–92

[10] Kvitko G. V., Buzdin A. A. Latyshev K. S., “Metod krupnykh chastits v zadachakh modelirovaniya protsessov evolyutsii relyativistskikh elektronnykh puchkov”, Problemy matematicheskikh i fizicheskikh nauk: Ma- terialy postoyannykh nauchnykh seminarov, KGU, Kaliningrad, 2000, 3–8

[11] Von Neuman J., Richtmyer R. D., “A method for numerical calculation of hydrodynamic shocks”, J. Appl. Phys., 21 (1950), 232–237 | DOI | MR | Zbl

[12] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR | Zbl

[13] Lax P. D., Wendroff B., “Systems of conservation laws. III”, Comm. Pure Appl. Math., 13:2 (1960), 217–237 | DOI | MR | Zbl

[14] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978, 687 pp. | MR | Zbl

[15] Grudnitskii V. G., Komov A. L., Buzdin A. A., Kvitko G. V., Latyshev K. S., “Vzaimodeistvie elektronnogo puchka s gazovoi struei v ustroistve vyvoda”, Otchet MRTI AN SSSR, 1983, no. V-266/501, 20–34

[16] Mitchner M., Kucher I., Chastichno ionizirovannye gazy, Mir, M., 1976

[17] Morozov A. I., Solovev L. S., “Geometriya magnitnogo polya”, Voprosy teorii plazmy, ed. Leontovich M. A., Gosatomizdat, M., 1963, 3–91