The solution of convection-diffusion stationary problem with dominant convection by multigrid method with special smoothers
Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 63-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MM_2006_18_5_a6,
     author = {L. A. Krukier and G. V. Muratova},
     title = {The solution of convection-diffusion stationary problem with dominant convection by multigrid method with special smoothers},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_5_a6/}
}
TY  - JOUR
AU  - L. A. Krukier
AU  - G. V. Muratova
TI  - The solution of convection-diffusion stationary problem with dominant convection by multigrid method with special smoothers
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 63
EP  - 72
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_5_a6/
LA  - ru
ID  - MM_2006_18_5_a6
ER  - 
%0 Journal Article
%A L. A. Krukier
%A G. V. Muratova
%T The solution of convection-diffusion stationary problem with dominant convection by multigrid method with special smoothers
%J Matematičeskoe modelirovanie
%D 2006
%P 63-72
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_5_a6/
%G ru
%F MM_2006_18_5_a6
L. A. Krukier; G. V. Muratova. The solution of convection-diffusion stationary problem with dominant convection by multigrid method with special smoothers. Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 63-72. http://geodesic.mathdoc.fr/item/MM_2006_18_5_a6/

[1] Krukier L. A., Martynova T. S., “Vliyanie formy zapisi uravneniya konvektsii-diffuzii na skhodimost $SOR$”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1821–1827 | MR | Zbl

[2] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Nauka, M., 1999 | MR

[3] Morton K., “Numerical solution of Convection-Di?usion Problems”, Appl. Math. Mathematical Computation, Chapman and Hall, London, 1996 | MR | Zbl

[4] Zhang J., “Preconditioned iterative methods and finite difference schemes for convection-diffusion”, Appl. Math. Comp., 2000, no. 109, 11–30 | DOI | MR | Zbl

[5] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. VUZov Matem., 1979, no. 7, 41–52 | MR | Zbl

[6] Krukier L. A., Chikina L. G., Belokon T. V., “Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations”, Appl. Numer. Math., 2002, no. 41, 89–105 | DOI | MR | Zbl

[7] Krukier L. A., “Special preconditions for iterative solution of strongly nonsymmetric linear systems”, Proceedings of the Conference on PRISM'97 (Nijmegen), 1997, 107–119

[8] Muratova G. V, Krukier L. A., “Multigrid method for the iterative solution of strongly nonselfadjoint problems with dissipative matrix”, Proc. of the AMLI-96 Conference (Nijmegen, June 13–15), II, 1996, 169–178 | MR

[9] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[10] Astakhantsev G. P., “Ob odnom iteratsionnom metode resheniya setochnykh ellipticheskikh zadach”, Zh. vychisl. matem. i matem. fiz., 11:2 (1971), 439–448

[11] Bakhvalov N. S., “O skhodimosti odnogo iteratsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 101–135 | MR

[12] Shaidurov V. V., Mnogosetochnyi metod konechnykh elementov, Nauka, M., 1989 | MR

[13] Bramble J., Pasciak J., Xu J., “The Analysis of Multigrid Algorithms for Nonsymmetric and Inde?nite Elliptic Problems”, Mathematics of Computation, 51:184 (1988), 389–414 | DOI | MR | Zbl

[14] Cao Z., “Convergence of Multigrid Methods for nonsymmetric indefinite problems”, Appl.Math.Comp., 1988, no. 28, 269–288 | DOI | MR | Zbl

[15] Hackbusch W., Multigrid method and application, Springer Verlag, Berlin, 1985 | MR | Zbl

[16] Bakhvalov N. S., Kobelkov G. M., Kuznetsov Yu. A. i dr., “Chislennye metody zadach matematicheskoi fiziki”, Sovremennye problemy vychislitelnoi matematiki i matematicheskogo mode- lirovaniya, 1, Nauka, M., 2005, 18–28

[17] Mandel J., “Multigrid Convergence for nonsymmetric indefinite variational problems and one smoothing step”, Appl.Math.Comput., 1986, no. 19, 201–216 | DOI | MR | Zbl

[18] Muratova G. V., Andreeva E. M., “Solution of convection-diffusion problem by multigrid method with different smoothers”, Proceedings of International Conference on Computational Mathematics, 2, IMC MG, Novosibirsk, 2002, 649–654 | MR

[19] Muratova G. V., “Vybor sglazhivatelya mnogosetochnogo metoda dlya zadach konvektsii-diffuzii s preobladayuschei konvektsiei”, Matematicheskoe modelirovanie, 17:1 (2005), 109–113 | MR | Zbl