Mathematical modelling of the 3D incompressible fluid flows
Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 5-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the direct numerical simulation of the 3D viscous incompressible fluid flows the Splitting on physical factors Method for Incompressible Fluid flows (SMIF-MERANGE) with hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, monotonous) has been used. The applications of the method SMIF-MERANGE for the simulation of the 3D external and internal flows of the viscous incompressible fluid are demonstrated. The detailed formation mechanisms of vortex loops in the sphere wake for the different homogeneous fluid flow regimes are discussed (in the wide range of Reynolds numbers $270\mathrm{Re}10^6$). Some examples of the stratified fluid flows around a sphere are considered (for the following ranges of the internal Froude and Reynolds numbers: $0.005\mathrm{Fr}1$, $50\mathrm{Re}1000$). Some example of the simulation of the air flows in a clean room (CR) is demonstrated.
@article{MM_2006_18_5_a1,
     author = {V. A. Gushchin and P. V. Matyushin},
     title = {Mathematical modelling of the {3D} incompressible fluid flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_5_a1/}
}
TY  - JOUR
AU  - V. A. Gushchin
AU  - P. V. Matyushin
TI  - Mathematical modelling of the 3D incompressible fluid flows
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 5
EP  - 20
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_5_a1/
LA  - ru
ID  - MM_2006_18_5_a1
ER  - 
%0 Journal Article
%A V. A. Gushchin
%A P. V. Matyushin
%T Mathematical modelling of the 3D incompressible fluid flows
%J Matematičeskoe modelirovanie
%D 2006
%P 5-20
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_5_a1/
%G ru
%F MM_2006_18_5_a1
V. A. Gushchin; P. V. Matyushin. Mathematical modelling of the 3D incompressible fluid flows. Matematičeskoe modelirovanie, Tome 18 (2006) no. 5, pp. 5-20. http://geodesic.mathdoc.fr/item/MM_2006_18_5_a1/

[1] Belotserkovskii O. M., Guschin V. A., Konshin V. N., “Metod rasschepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnostyu”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 27:4 (1987), 594–609 | MR

[2] Magarvey R. H., Bishop R. L., “Transition ranges for three-dimensional wakes”, Can. J. Phys., 39 (1961), 1418–1422

[3] Sakamoto H., Haniu H., “A study on vortex shedding from spheres in a uniform flow”, J. Fluids Engng., 112 (1990), 386–392 | DOI

[4] Sakamoto H., Haniu H., “The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow”, J. Fluid Mech., 287 (1995), 151–171 | DOI

[5] Taneda S., “Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106”, J. Fluid Mech., 85 (1978), 187–192 | DOI

[6] Guschin V. A., Matyushin P. V., “Chislennoe modelirovanie prostranstvennykh otryvnykh techenii okolo sfery”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 37:9 (1997), 1122–1137 | MR | Zbl

[7] Johnson T. A., Patel V. C., “Flow past a sphere up to a Reynolds number of 300”, J. Fluid Mech., 378 (1999), 19–70 | DOI

[8] Mittal R., Najjar F. M., Vortex dynamics in the sphere wake, AIAA Paper 99-3806, 1999

[9] Gushchin V. A., Kostomarov A. V., Matyushin P. V., Pavlyukova E. R., “Direct numerical simulation of the transitional separated fluid flows around a sphere and a circular cylinder”, J. of Wind Engineering and Industrial Aerodynamics, 90:4–5 (2002), 341–358 | DOI

[10] Guschin V. A., Matyushin P. V., “Klassifikatsiya rezhimov otryvnykh techenii zhidkosti okolo sfery pri umerennykh chislakh Reinoldsa”, Matematicheskoe modelirovanie: problemy i rezultaty, Nauka, M., 2003, 199–235

[11] Matyushin P. V., Chislennoe modelirovanie prostranstvennykh otryvnykh techenii odnorodnoi neszhimaemoi vyazkoi zhidkosti okolo sfery, dissertatsiya na soiskanie stepeni kand.fiz.-mat.nauk, Inst. Avtomatizatsii Proektirovaniya RAN, Moskva, 2003

[12] Gushchin V. A., Kostomarov A. V., Matyushin P. V., “$3D$ Visualization of the Separated Fluid Flows”, Journal of Visualization, 7:2 (2004), 143–150 | DOI

[13] Baidulov V. G., Matyushin P. V., Chashechkin Yu. D., “Struktura techeniya, indutsirovannogo diffuziei, okolo sfery v nepreryvno stratifitsirovannoi zhidkosti”, Doklady Akademii Nauk, 401:5 (2005), 613–618

[14] Boyer D. L., Fernando H. J. S., Lin Q., Lindberg W. R., “Stratified flow past a sphere”, J. Fluid Mech., 240 (1992), 315–354 | DOI

[15] Lofquist K. E. B., Purtell L. P., “Drag on a sphere moving horizontally through a stratified liquid”, J. Fluid Mech., 148 (1984), 271–284 | DOI

[16] Crapper G. D., “A three-dimensional solution for waves in the lee of mountains”, J. Fluid Mech., 6 (1959), 51–76 | DOI | MR | Zbl