Three-dimensional fluid equations from distribution function with discontinuity in velocity space
Matematičeskoe modelirovanie, Tome 18 (2006) no. 4, pp. 118-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of hydrodynamic-type equations for a stratified gas in gravity field is derived from BGK equation by method of piecewise continuous distribution function. The obtained system of the equations generalizes the Navier–Stokes one at arbitrary Knudsen numbers. The problem of a wave disturbance propagation in a rarefied gas is explored. The verification of the model is made for a limiting case of a homogeneous medium. The phase velocity and attenuation coefficient values are in an agreement with former fluid mechanics theories and, in the range of the Knudsen number around 1, even more close to experiment and to kinetics-based results.
@article{MM_2006_18_4_a9,
     author = {S. B. Leble and M. A. Solovchuk},
     title = {Three-dimensional fluid equations from distribution function with discontinuity in velocity space},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {118--128},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_4_a9/}
}
TY  - JOUR
AU  - S. B. Leble
AU  - M. A. Solovchuk
TI  - Three-dimensional fluid equations from distribution function with discontinuity in velocity space
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 118
EP  - 128
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_4_a9/
LA  - ru
ID  - MM_2006_18_4_a9
ER  - 
%0 Journal Article
%A S. B. Leble
%A M. A. Solovchuk
%T Three-dimensional fluid equations from distribution function with discontinuity in velocity space
%J Matematičeskoe modelirovanie
%D 2006
%P 118-128
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_4_a9/
%G ru
%F MM_2006_18_4_a9
S. B. Leble; M. A. Solovchuk. Three-dimensional fluid equations from distribution function with discontinuity in velocity space. Matematičeskoe modelirovanie, Tome 18 (2006) no. 4, pp. 118-128. http://geodesic.mathdoc.fr/item/MM_2006_18_4_a9/

[1] C. S. Wang Chang, G. E. Uhlenbeck, Eng.Res.Ins., Univ. of Michigan. Project M 999. Ann.Arbor., Michigan, 1952

[2] C. L. Pekeris, Z. Alterman, L. Finkelstein, K. Frankowski, Phys. Fluids, 5 (1962), 1608 | DOI | MR | Zbl

[3] S. B. Leble, Nonlinear Waves in Waveguides with Stratification, Springer-Verlag, Berlin, 1990, 164 pp.

[4] S. B. Leble, D. A. Vereshchagin, Advances in Nonlinear Acoustic, ed. H. Hobaek, World Scientific, Singapore, 1993, 219–224

[5] D. A. Vereshchagin , S. B. Leble, Proceedings of International Symposium on Nonlinear Theory and its Applications “NOLTA '93” (Hawaii, 1993), ed. A. Kuh, 1097–1100

[6] D. A. Vereshchagin, S. B. Leble, Nonlinear Acoustics in Perspective, ed. R. Wei, 1996, 142–146

[7] X. Chen, H. Rao, E. A. Spiegel, Physics Letters A, 271 (2000), 87–91 | DOI

[8] X. Chen, H. Rao, E. A. Spiegel, Phys. Rev., E64 (2001), 046309

[9] L. Lees., J.Soc.Industr. and Appl.Math., 13:1 (1965), 278–311 | DOI | MR

[10] D. A. Vereshchagin, S. B. Leble, “Piecewise continuous distribution function method: Fluid equations and wave disturbances at stratified gas”, Physics, 2005, 0503233 | Zbl

[11] Yen. Liu Chung, L. Lees, Rarefied gas dynamics, ed. L. Talbot, Academic Press, 1961, 391–428 | MR

[12] I. P. Shidlovskij, The introduction in rarefied gas dynamics, in Russian, Nauka, Moscow, 1965, 220 pp.

[13] H. M. Mott-Smith, Phys.Rev., 82 (1951), 885–892 | DOI | MR | Zbl

[14] I. Ivchenko, J. Coll and Interf. Science, 120:1 (1987), 1–7 | DOI | MR

[15] C. Cercignani, Theory and application of the Boltzmann equation, Scottish Academic Press, Edinburgh, London, 1975 | MR | Zbl

[16] E. P. Gross, E. A. Jackson, Phys. Fluids, 2:4 (1959), 432–441 | DOI | MR | Zbl

[17] E. A. Spiegel, J.-L. Thiffeault, Physics of Fluids, 15:11 (2003), 3558–3567 | DOI | MR

[18] M. Greenspan, J. Acoust. Soc. Am., 28:4 (1956), 644–648 | DOI

[19] E. Meyer, G. Sessler, Z. Physik, 149 (1957), 15–39 | DOI | MR

[20] J. K. Buckner, J. H. Ferziger, Phys. Fluids, 9:12 (1966) | MR

[21] B. V. Alekseev, UFN, 170 (2000), 649 | DOI

[22] S. Chapman, T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge, 1961 | MR

[23] L. Sirovich, J. K. Thurber, Acoust. Soc. Am., 37:2 (1965), 329 | DOI | MR

[24] U.S.S.R. Comput. Math. and Math. Phys., 28:6 (1988), 64–75 | DOI | MR | Zbl

[25] Comput. Math. Math. Phys., 40:12 (2000), 1801–1815 | MR | Zbl

[26] B. N. Chetverushkin, Kineticheskie skhemy i kvazigazodinamicheskayasistema uravnenii, MAKS Press, M., 2004, 332 pp.