Mathematical modeling of femtosecond pulse propagation
Matematičeskoe modelirovanie, Tome 18 (2006) no. 4, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the investigation of the femtosecond pulse propagation in the air by means of numerical methods. The phenomenon behavior is determined by the relation between the multiphoton ionization and small-scale self-focusing (filamentation). A sharp decrease of the problem actual size during self-focusing and necessity need of the accuracy for the approximation of calculations result in the numerical meshes of small-scale with number of steps about of 1012. These calculations were made by means of the cluster with using of parallel programming algorithms. The step-by-step behaviour of this process was established, where the evolution of filamentation takes place without energy losses till the intensity reaches the threshold value. Then the dissipation for ionization comes into play and the intensity starts to decrease under defocusing influence of electron plasma. The conditions for repeated self-focusing can be formed after the intensity is below the ionization threshold.
@article{MM_2006_18_4_a0,
     author = {A. D. Balashov and A. Kh. Pergament},
     title = {Mathematical modeling of femtosecond pulse propagation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_4_a0/}
}
TY  - JOUR
AU  - A. D. Balashov
AU  - A. Kh. Pergament
TI  - Mathematical modeling of femtosecond pulse propagation
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 3
EP  - 18
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_4_a0/
LA  - ru
ID  - MM_2006_18_4_a0
ER  - 
%0 Journal Article
%A A. D. Balashov
%A A. Kh. Pergament
%T Mathematical modeling of femtosecond pulse propagation
%J Matematičeskoe modelirovanie
%D 2006
%P 3-18
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_4_a0/
%G ru
%F MM_2006_18_4_a0
A. D. Balashov; A. Kh. Pergament. Mathematical modeling of femtosecond pulse propagation. Matematičeskoe modelirovanie, Tome 18 (2006) no. 4, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2006_18_4_a0/

[1] J. Kasparian, M. Rodrigues, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. Andre, A. Mysyrowicz, R. Souerbrey, J.-P. Wolf, L. Woste, Science, 61:301 (2003)

[2] A. Braun et al., Opt. Lett. 20, 1995, no. 73; E. T. J. Nibbering et al., Opt. Lett. 21, 1996, no. 62

[3] A. Brodeur et al., Opt. Lett. 22, 304 (1997)

[4] B. LaFontaine et al., Phys. Plasmas, 1999, no. 6, 1615 | DOI

[5] R. Y. Chiao, Phys.Rev.Lett, 13:5 (1964) | DOI

[6] V. I. Bespalov, V. I. Talanov, “O nitevidnoi strukture puchkov sveta v nelineinykh zhidkostyakh”, Pisma v ZhETF, 3 (1966), 471

[7] G. Fibich, B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation”, Phisica D, 157 (2001), 113–147 | MR

[8] S. Skupin, L. Berge et al., Phys. Rev. E, 70 (2004), 046602 | DOI

[9] Yu. N. Karamzin, A. P. Sukhorukov, V. A. Trofimov, Matematicheskoe modelirovanie v nelineinoi optike, Izdatelstvo Moskovskogo universiteta, M., 1989 | MR | Zbl

[10] V. M. Volkov, “Konservativnye raznostnye skhemy s uluchshennymi dispersionnymi svoistvami dlya nelineinykh uravnenii shredingerskogo tipa”, Differentsialnye uravneniya, 29:7 (1993)

[11] M. D. Feit, J. A. Fleck, Appl. Phys. Lett., 24 (1974), 169 | DOI

[12] E. T. J. Nibbering, G. Grillon, M. A. Franco at al., J. Opt. Soc Am.B, 14 (1997), 650 | DOI

[13] Aztec, A Massively Parallel Iterative Solver Library for Solving Sparse Linear Systems, http://www.cs.sandia.gov/CRF/aztec1.html

[14] V. N. Datsyuk, A. A. Bukatov, A. I. Zhegulo, Mnogoprotsessornye sistemy i parallelnoe programmirovanie, , Rostovskii gosudarstvennyi universitet, Rostov http://rsusu1.rnd.runnet.ru/koi8/index.html

[15] A. D. Balashov, A. Kh. Pergament, Matematicheskoe modelirovanie protsessov filamentatsii v sredakh s kubicheskoi nelineinostyu, preprint 40., IPM im. M.V.Keldysha RAN, M., 2004

[16] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1959

[17] J. Kasparian, R. Sauerbrey, S. L. Chin, “The critical laser intensity of self-guided light filaments in air”, Appl. Phys. B, 2000, no. 71, 877–879

[18] V. P. Kandidov, O. G. Kosareva, S. A. Shlenov i dr., “Dinamicheskaya melkomasshtabnaya samofokusirovka femtosekundnogo impulsa”, Kvantovaya elektronika, 35:1 (2005)

[19] L. I. Mirkin, M. A. Rabinovich, L. P. Yaroslavskii, “Metod generirovaniya korrelirovannykh gaussovskikh psevdosluchainykh chisel na EVM”, ZhVM i MF, 1972, no. 5, 1353–1357 | MR | Zbl