Incomplete coupling principle in the poroelastic models
Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 24-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quality investigation of the heterogeneous isothermal boundary poroelastic problems is presented to realize an incomplete coupling principle. This principle is defined as detachment of the percolation and elastic groups of equations in the general poroelastic equations. An incomplete coupling of these equations means their scanty mutual dependence by means boundary conditions or some variables. This principle gives a possibility to reduce a solution of coupling boundary problems to the solution series of uncoupling boundaries problems. Heterogeneity means that material constants depend on space coordinates. The analytical solutions are shown as an illustration.
@article{MM_2006_18_2_a1,
     author = {A. V. Karakin},
     title = {Incomplete coupling principle in the poroelastic models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--42},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_2_a1/}
}
TY  - JOUR
AU  - A. V. Karakin
TI  - Incomplete coupling principle in the poroelastic models
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 24
EP  - 42
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_2_a1/
LA  - ru
ID  - MM_2006_18_2_a1
ER  - 
%0 Journal Article
%A A. V. Karakin
%T Incomplete coupling principle in the poroelastic models
%J Matematičeskoe modelirovanie
%D 2006
%P 24-42
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_2_a1/
%G ru
%F MM_2006_18_2_a1
A. V. Karakin. Incomplete coupling principle in the poroelastic models. Matematičeskoe modelirovanie, Tome 18 (2006) no. 2, pp. 24-42. http://geodesic.mathdoc.fr/item/MM_2006_18_2_a1/

[1] Turuntaev S. B., Gorbunova I. V., “O kharaktere mnozhestvennogo razrusheniya v ochagovoi zone Gazliiskikh mestorozhdenii”, Fizika zemli, 1989, no. 6, 72–78

[2] Belousov T. P., Iskhakov I. A., Karakin A. V., Mukhamediev Sh. A., Turuntaev S. B., “Aktivnye razlomy, napryazhennoe sostoyanie i seismichnost Yugo-Vostochnogo Tatarstana”, Seismichnost i seismicheskoe raionirovanie Severnoi Evrazii, no. 2–3, OIFZ RAN, Moskva, 1995, 90–108

[3] Karakin A. V., Kuryanov Yu. A., Pavlenkova N. I., Razlomy, treschinovatye zony i volnovody v verkhnikh sloyakh zemnoi obolochki, VNIIgeosistem, M., 2003, 228 pp.

[4] Biot M. A., “Mechanics of Deformation and Propagation in Porous Media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[5] Rice J. R., Cleary M. P., “Some Basic Stress Diffusion Solutions for Fluid- Saturated Elastic Porous Media”, Reviews of Geophysics and Space Physics, 14:2 (1976), 227–241 | DOI

[6] Rais Dzh., Mekhanika ochaga zemletryaseniya, Mir, M., 1982, 217 pp.

[7] Detourney E., Cheng A. H.-D., “Fundamental of Poroelasticity. V.5.”, Comprehensive Rock Engineering. Principle, Prtactice and Projects, eds. J. A. Hudson, E. T. Brown, C. Fairhurst, E. Hoek, Pergamon Press, New York, 1993, 113–172

[8] Nikolaevskii V. N., Geomekhanika i flyuidodinamika, Nedra, M., 1996, 448 pp.

[9] Karakin A. V., “O porouprugikh napryazheniyakh, voznikayuschikh pri filtratsii v tonkom sloe s ploskoparallelnymi granitsami”, Geoinformatika, 1997, no. 4, 3–14

[10] Averbukh A. Z., Akhiyarov V. Kh., Zhirkevich V. Yu., Koldoba A. V., Kuznetsov O. L., Popov Yu. P., Pergament A. Kh., Poveschenko Yu. A., Khozyainov M. S., “Matematicheskoe modelirovanie protsessov podzemnoi gidrodinamiki v napryazhenno-deformirovannykh sredakh”, Dokl. RAN, 340:1 (1995), 51–56

[11] Gnedin Yu. I., Koldoba A. V., Myasnikov V. P., Pergament A. Kh., Poveschenko Yu. A., Popov S. B., Simus N. A., “Protsessy filtratsii v napryazhenno-deformirovannykh sredakh”, Sbornik trudov IAPU DVO RAN, Vladivostok, 1996, 14 pp.

[12] Koldoba A. V., Pergament A. Kh., Poveschenko Yu. A., Simus N. A., “Napryazhenno-deformirovannoe sostoyanie nasyschennoi poristoi sredy, vyzvannoe filtratsiei zhidkosti”, Matematicheskoe modelirovanie, 11:10 (1999), 3–16

[13] Gassmann F., “Uber die Elastizitat porozer Medien. Mitteiluagen aus dem”, Zurich: Inst. fur Geophysik, 17 (1956), 1–23 | MR