Mathematical modeling of coagulation kinetic
Matematičeskoe modelirovanie, Tome 18 (2006) no. 1, pp. 99-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to the convergence of the direct simulation method to the solutions of Smoluchowski coagulation equation. Monte-Carlo scheme of event modeling is demonstrated, convergence of the simulation method is proved for the spatially homogeneous model. Convergence of the simulation algorithm to the exact solutions and solutions, obtained with the difference schemes, is demonstrated for the spatially heterogeneous model.
@article{MM_2006_18_1_a9,
     author = {V. A. Galkin and D. Yu. Ossetski},
     title = {Mathematical modeling of coagulation kinetic},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--116},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_1_a9/}
}
TY  - JOUR
AU  - V. A. Galkin
AU  - D. Yu. Ossetski
TI  - Mathematical modeling of coagulation kinetic
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 99
EP  - 116
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_1_a9/
LA  - ru
ID  - MM_2006_18_1_a9
ER  - 
%0 Journal Article
%A V. A. Galkin
%A D. Yu. Ossetski
%T Mathematical modeling of coagulation kinetic
%J Matematičeskoe modelirovanie
%D 2006
%P 99-116
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_1_a9/
%G ru
%F MM_2006_18_1_a9
V. A. Galkin; D. Yu. Ossetski. Mathematical modeling of coagulation kinetic. Matematičeskoe modelirovanie, Tome 18 (2006) no. 1, pp. 99-116. http://geodesic.mathdoc.fr/item/MM_2006_18_1_a9/

[1] Smoluchowski M. V., Z. phys. Chem., 92 (1917), 129–168

[2] Galkin V. A., Uravnenie Smolukhovskogo, FIZMATLIT, M., 2001, 336 pp. | MR

[3] Voloschuk V. M., Sedunov Yu. S., Protsessy koagulyatsii v dispersnykh sistemakh, Gidrometeoizdat, L., 1975, 320 pp.

[4] Galkin V. A., “Skhodimost raznostnykh skhem i metoda neposredstvennogo modelirovaniya k resheniyam uravneniya Smolukhovskogo kineticheskoi teorii koagulyatsii”, Doklady RAN, 397:1 (2004), 7–11 | MR

[5] Rozanov Yu. A., Teoriya veroyatnostei, sluchainye protsessy i matematicheskaya statistika, Nauka, M., 1985, 320 pp. | MR

[6] Bagdasarova I. R., Galkin V. A., Matematicheskoe modelirovanie, 11:6 (1994), 82–112 | MR

[7] Galkin V. A., Ryzhikov D. A., Tezisy dokladov mezhdunarodnogo seminara “Supervychisleniya i matematicheskoe modelirovanie”, Sarov, 2003, 44–46

[8] Galkin V. A., Osetskii D. Yu., Tezisy dokladov 2-i mezhdunarodnoi konferentsii “Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya”, Obninsk, 2004, 58–61 | MR