Program system to test the modeling of gas-surface scattering
Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 107-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

A program system to test the correctness of modeling of the gas-surface scattering is presented. The program system provides simulating the behavior of non-interacting molecules in the finite space while changing the shape of the limited surface, the modeling method of the scattering process, the surface temperature distribution and the initial gas state. The efficiency of the program system is demonstrated on the example of reaching the gas equilibrium in the bulbs of various shapes under condition of the surface temperature perturbation. Some results of test calculations are presented.
@article{MM_2006_18_12_a8,
     author = {O. V. Sazhin and A. N. Kulev},
     title = {Program system to test the modeling of gas-surface scattering},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--114},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_12_a8/}
}
TY  - JOUR
AU  - O. V. Sazhin
AU  - A. N. Kulev
TI  - Program system to test the modeling of gas-surface scattering
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 107
EP  - 114
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_12_a8/
LA  - ru
ID  - MM_2006_18_12_a8
ER  - 
%0 Journal Article
%A O. V. Sazhin
%A A. N. Kulev
%T Program system to test the modeling of gas-surface scattering
%J Matematičeskoe modelirovanie
%D 2006
%P 107-114
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_12_a8/
%G ru
%F MM_2006_18_12_a8
O. V. Sazhin; A. N. Kulev. Program system to test the modeling of gas-surface scattering. Matematičeskoe modelirovanie, Tome 18 (2006) no. 12, pp. 107-114. http://geodesic.mathdoc.fr/item/MM_2006_18_12_a8/

[1] C. Cercignani, The Boltzmann Equation and its Application, Springer, New York, 1988 | MR

[2] J. C. Maxwell, “On the Stresses in Rarefied Gas”, The Scientific Papers, 2 (1890)

[3] C. Cercignani, M. Lampis, “Kinetic model for gas-surface interaction”, Transp. J. Theory and Stat. Phys., 1 (1971), 101–114 | DOI | MR | Zbl

[4] F. Sharipov, “Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. I: Plane flow between two parallel plates”, Eur. J. Mech. B/Fluids, 21 (2002), 113–123 | DOI | MR | Zbl

[5] R. G. Lord, “Some further extensions of Cercignani-Lampis gas-surface interaction model”, J. Phys. Fluids, 7 (1995), 1159–1161 | DOI | Zbl

[6] M. Epstein, “A model of the wall boundary condition in kinetic theory”, J. AIAA, 5:10 (1967), 1797–1800 | DOI

[7] V. D. Borman, S. Yu. Krylov, A. V. Prosyanov, “K teorii neravnovesnykh yavlenii v sisteme gaz-tverdoe telo”, ZhETF, 94:10 (1988), 271–289

[8] S. B. Nesterov, Yu. K. Vassiliev, A. P. Kryukov, “Influence of the chamber shape on the non-uniformity of gas distribution”, Vacuum, 53:1–2 (1999), 193–196 | DOI

[9] G. A. Bird, Molecular Gas Dinamics and Direct Simulation of Gas Flows, Oxford University Press, Oxford, 1996 | MR | Zbl

[10] S.-I. Nishizawa, M. Hirata, “DSMC analysis of thermal transpiration of capacitance diaphragm gauge”, Vacuum, 67 (2002), 301–306 | DOI

[11] S. B. Nesterov, Yu. K. Vasilev, A. V. Androsov, Raschet slozhnykh vakuumnykh sistem, Izd. MEI, M., 2001