Mathematical models of plasma physics (review)
Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 67-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Plasma is a partially or fully ionized gas which satisfies the condition of quasi-neutrality. Overwhelming part of the Universe exists in the state of plasma. The plasma is widely used in industrial and laboratory conditions. In the second part of the 20th century plasma physics was formed as an original branch of physics. The theoretical basis of plasma physics is found in equations of mechanics of continuous media taking into account electromagnetic forces and Maxwell's equations. Different simplifications of these equations give series of mathematical models. They describe various, complicated processes in plasmas whose spatial and time scales differ by many orders.
@article{MM_2006_18_11_a6,
     author = {N. N. Kalitkin and D. P. Kostomarov},
     title = {Mathematical models of plasma physics (review)},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--94},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2006_18_11_a6/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - D. P. Kostomarov
TI  - Mathematical models of plasma physics (review)
JO  - Matematičeskoe modelirovanie
PY  - 2006
SP  - 67
EP  - 94
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2006_18_11_a6/
LA  - ru
ID  - MM_2006_18_11_a6
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A D. P. Kostomarov
%T Mathematical models of plasma physics (review)
%J Matematičeskoe modelirovanie
%D 2006
%P 67-94
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2006_18_11_a6/
%G ru
%F MM_2006_18_11_a6
N. N. Kalitkin; D. P. Kostomarov. Mathematical models of plasma physics (review). Matematičeskoe modelirovanie, Tome 18 (2006) no. 11, pp. 67-94. http://geodesic.mathdoc.fr/item/MM_2006_18_11_a6/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[2] P. Schram, Kinetic Theory of Gases and Plasmas, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991 | MR

[3] A. A. Vlasov, Teoriya mnogikh chastits, Gostekhizdat, 1950

[4] L. D. Landau, “Kineticheskoe uravnenie v sluchae kulonovskogo vzaimodeistviya”, ZhETF, 7:2 (1937), 203–209 | Zbl

[5] M. N. Rosenbluth, W. M. Mac-Donald, D. L. Judd, Phys. Rev., 107:1 (1957), 1–6 | DOI | MR | Zbl

[6] B. A. Trubnikov, “Stolknoveniya chastits v polnostyu ionizovannoi plazme”, Voprosy teorii plazmy, vyp. 1, Gosatomizdat, M., 1963, 98–182

[7] R. Balesku, Statisticheskaya mekhanika zaryazhennykh chastits, Mir, M., 1967 | MR

[8] A. Lenard, “On Bogolubov's Kinetic Equation for a Spatially Homogeneous Plasma”, Annals of Physics, 3 (1960), 90 | MR

[9] Yu. L. Klimantovich, Kineticheskaya teoriya neidealnogo gaza i neidealnoi plazmy, Nauka, M., 1975 | MR

[10] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[11] Ya. B. Zeldovich, Yu. P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[12] M. Basko, Uravnenie sostoyaniya metallov v priblizhenii srednego iona, preprint No 57, ITEF, M., 1982

[13] N. N. Kalitkin, I. V. Ritus, A. M. Mironov, Ionizatsionnoe ravnovesie s uchëtom vyrozhdeniya elektronov, preprint No 43, IPM Keldysha, M., 1983

[14] L. B. Timan, “Vliyanie vzaimodeistviya ionov na ikh ravnovesnye kontsentratsii v sluchae mnogokratnoi termicheskoi ionizatsii”, ZhETF, 27:6(12) (1954), 708–711

[15] N. N. Kalitkin, L. V. Kuzmina, Modeli neidealnosti plazmy, preprint No 16, IPM Keldysha, M., 1989 | MR

[16] V. P. Kopyshev, “Vtoroi virialnyi koeffitsient plazmy”, ZhETF, 55:4(10) (1968), 1304–1310

[17] A. A. Likalter, “Vzaimodeistvie atomov s elektronami i ionami v plazme”, ZhETF, 56:1 (1969), 240–245

[18] J. P. Hansen, “Statistical mechanics of dense ionized matter. 1: Equilibrium properties of the classical one-component plasma”, Phys. Rev. A, 8:6 (1973), 3096–3109 | DOI

[19] J. P. Hansen, “Statistical mechanics of dense ionized matter. 2: Equilibrium properties and melting transition of the crystallized one-component plasma”, Phys. Rev. A, 8:6 (1973), 3110–3122 | DOI

[20] A. S. Kaklyugin, G. E. Norman, “Uravneniya sostoyaniya i ionizatsionnogo ravnovesiya nedebaevskoi plazmy”, TVT, 25:2 (1987), 209–217

[21] V. Ebeling, V. Kreft, D. Kremp, Teoriya svyazannykh sostoyanii i ionizovannogo ravnovesiya v plazme i tverdom tele, Mir, M., 1979

[22] G. Kalman (ed.), Strongly Coupled Plasmas, Plenum Press, New York, 1987

[23] V. E. Fortov, I. T. Yakubov, Fizika neidealnoi plazmy, OIKhV i IVT AN SSSR, Chernogolovka, 1984

[24] Physics of nonideal plasmas, Texte zur Physik, 26, Teubner, Stuttgart-Leipzig, 1992

[25] N. N. Kalitkin, “Neadekvatnost debaevskoi asimptotiki”, Matem. modelirovanie, 17:4 (2005), 40–52 | MR | Zbl

[26] G. Grim, Ushirenie spektralnykh linii v plazme, Mir, M., 1978

[27] I. O. Golosnoi, “Analiticheskie approksimatsii dlya ushireniya spektralnykh linii vodorodopodobnykh ionov”, Fizika plazmy, 27:6 (2001), 526–535

[28] V. S. Volokitin, I. O. Golosnoi, N. N. Kalitkin, Teoreticheskie modeli uravneniya sostoyaniya veschestva, MIFI, M., 1992

[29] V. S. Volokitin, I. O. Golosnoi, N. N. Kalitkin, “Shirokodiapazonnoe uravnenie sostoyaniya veschestva. II mikropolevaya model”, Izv. Vysshikh uchebnykh zavedenii, seriya Fizika, 1995, no. 4, 11–31

[30] N. N. Kalitkin, A. S. Pavlov, “Mikropolevaya model neidealnosti i metallizatsiya plazmy”, Matem. modelirovanie, 17:6 (2005), 21–32 | Zbl

[31] V. A. Sechenov, O. E. Schekotov, “Sravnenie eksperimentalnykh i raschetnykh termodinamicheskikh parametrov silnoneidealnoi tsezievoi plazmy”, TVT, 12:3 (1974), 652–654

[32] A. A. Vedenov, A. I. Larkin, “Uravnenie sostoyaniya plazmy”, ZhETF, 36:4 (1959), 1133–1142 | MR | Zbl

[33] A. I. Larkin, “Termodinamicheskie funktsii nizkotemperaturnoi plazmy”, ZhETF, 38:6 (1960), 1896–1898 | MR

[34] V. P. Kopyshev, “Ob uravnenii sostoyaniya plazmy”, Voprosy atomnoi nauki i tekhniki. Seriya teoreticheskaya i prikladnaya fizika, 4 (1989), 3–10

[35] C. E. Moore, Ionization potentials and ionization limits derived from optical spectral, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand., 34, NBC, Washington, 1970

[36] I. S. Grigorev, E. Z. Meilikhov (red.), Fizicheskie velichiny. Spravochnik, Energoatomizdat, M., 1991

[37] K. P. Khyuber, G. Gertsberg, Konstanty dvukhatomnykh molekul, Ch. 1; Ч. 2, Мир, М., 1984

[38] R. P. Feynman, N. Metropolis, E. Teller, “Equation of state of elements based on the generalised Fermi–Thomas theory”, Phys. Rev., 75:10 (1949), 1561–1573 | DOI | MR | Zbl

[39] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, Izd. inostrannoi literatury, M., 1960 | MR

[40] Rolf Landshoff, “Transport phenomena in a completely ionized gas in presense of a magnetic field”, Phys. Rev., 76:7 (1949), 904–909 | DOI | Zbl

[41] Robert S. Conen, Lyman Spitzer jr., Paul McRoutly, “The electrical conductivity of an ionized gas”, Phys. Rev., 80:2 (1950), 230–238 | DOI | MR | Zbl

[42] R. Landshoff, “Convergence of the Chapmain–Enskog method for a completely ionized gas”, Phys. Rev., 82:3 (1951), 442–442 | DOI

[43] L. Spitzer, Richard Harm, “Transport phenomena in a completely ionized gas”, Phys. Rev., 89:5 (1953), 977–981 | DOI | Zbl

[44] R. S. Devoto, “Transport properties of ionized monatomic gases”, Physics of Fluids, 9:6 (1966), 1230–1240 | DOI

[45] C. P. Li, R. S. Devoto, “Fifth and sixth approximations to the electron transport coefficients”, Phys. of Fuids, 11:2 (1968), 448–450

[46] C. H. Kruger, M. Mitcher, U. Daybelge, “Transport properties of MHD-generator plasmas”, AIAA Journal, 6:9 (1968), 1712–1723 | DOI

[47] T. Kihara, O. Aono, “Unified theory of relaxations in plasmas; part I, basic theorem”, J. Phys. Sc. Jap., 18 (1963), 837 | DOI | MR

[48] Y. Itikava, “Transport coefficients of plasmas; application of unified theory”, J. Phys. Soc. Jap., 18 (1963), 1499 | DOI | MR

[49] H. A. Gould, H. E. DeWitt, “Convergent Kinetic equation for a classical plasma”, Phys. Rev., 155:1 (1967), 68–74 | DOI

[50] O. V. Konstantinov, V. I. Perel, ZhETF, 39 (1960), 861 | MR

[51] O. V. Konstantinov, V. I. Perel, “Utochnenie kineticheskikh koeffitsientov plazmy”, ZhETF, 41:4(10) (1961), 1328–1329 | MR

[52] N. N. Ogurtsova, I. V. Podmoshenskii, V. A. Smirnov, “Izmerenie elektroprovodnosti neidealnoi plazmy pri 38000 K i davleniyakh 500-2500 bar”, TVT, 18:3 (1974), 650–652

[53] V. A. Sechenov, E. E. Son, O. E. Schekotov, “Provodimost neidealnoi tsezievoi plazmy za otrazhennoi udarnoi volnoi”, Pisma v ZhETF, 1:19 (1975), 891–895

[54] V. A. Sechenov, E. E. Son, O. E. Schekotov, “Elektroprovodnost tsezievoi plazmy”, TVT, 15:2 (1977), 411–415

[55] N. V. Ermokhin, B. M. Kovalev, P. P. Kulik, V. Ya. Ryabyi, “Temperaturnaya zavisimost elektroprovodnosti plotnoi tsezievoi plazmy, poluchennoi impulsnym izobarnym omicheskim nagrevom”, TVT, 15:4 (1977), 695–702

[56] S. I. Andreev, T. V. Gavrilova, “Izmerenie elektroprovodnosti plazmy vozdukha pri davlenii svyshe 100 atm.”, TVT, 13:1, 176–178

[57] N. N. Kalitkin, “Provodimost nizkotemperaturnoi plazmy”, Teplofizika vysokikh temperatur, 6:5 (1968)

[58] V. S. Rogov, “Raschet provodimosti plazmy”, Teplofizika vysokikh temperatur, 8:4 (1970), 689

[59] V. S. Rogov, Provodimost slabo neidealnoi mnogokomponentnoi plazmy, Kand. diss. Inst. Prikl. Matematiki AN SSSR, 1971

[60] N. N. Kalitkin, V. V. Ermakov, “Elektronnyi perenos v plotnoi nevyrozhdennoi plazme”, Fizika plazmy, 5:3 (1979)

[61] V. B. Mintsev, V. E. Fortov, V. K. Gryaznov, “Elektroprovodnost vysokotemperaturnoi neidealnoi plazmy”, ZhETF, 79 (1980)

[62] I. E. Tamm, A. D. Sakharov, Teoriya magnitnogo termoyadernogo reaktora, v. 1, AN SSSR, M., 1958, 3–41

[63] L. A. Artsimovich, Upravlyaemye termoyadernye reaktsii, Fizmatgiz, M., 1963

[64] N. G. Basov, O. N. Krokhin, ZhETF, 46:1 (1964), 171–175

[65] B. B. Kadomtsev, Osnovy fiziki plazmy tokamaka, Ch. 1, VINITI, Itogi nauki i tekhniki. Fizika plazmy, 10, M., 1991

[66] “ITER Physics Basis”, Nuclear Fusion, 39:12 (1999), 2137–2638 | DOI

[67] “Status Report on Fusion Research”, Nuclear Fusion, 45 (2005), A1–A28 | DOI

[68] Y. N. Dnestrovskii, D. P. Kostomarov, Numerical Simulation of plasmas, Springer-Verlag, Berlin, Heidelberg, New York, Tokio, 1986 ; Yu. N. Dnestrovskii, D. P. Kostomarov, Matematicheskie modelirovanie plazmy, Nauka, M., 1993 | Zbl

[69] F. S. Zaitsev, Matematicheskoe modelirovanie toroidalnoi plazmy, Maks Press, M., 2005

[70] V. D. Shafranov, “Ravnovesie plazmy v magnitnom pole”, Voprosy teorii plazmy, 3, Gosatomizdat, M., 1963, 92–131

[71] B. B. Kadomtsev, O. P. Pogutse, “Nelineinye vintovye vozmuscheniya plazmy v tokamake”, ZhETF, 65:2(8) (1973), 575–589

[72] H. R. Strauss, “Nonlinear, three-dimensional magnetohydrodynamics of noncircular Tokamaks”, Phys Fluids, 19 (1976), 134–140 | DOI

[73] L. E. Zakharov, V. D. Shafpanov, “Ravnovesie plazmy s tokom v toroidalnykh sistemakh”, Voprosy teorii plazmy, 11, Energoizdat, M., 1982, 118–233 | MR

[74] D. P. Kostomarov, F. S. Zaitsev, A. G. Shiskin et al., “The problem of evolution of toroidal plasma equilibria”, Computer Physics Communications, 126 (2000), 101–106 | DOI | Zbl

[75] F. S. Zaitsov, M. R. O'Brien, M. Cox, “Three-dimensional neoclassical nonlinear kinetic equation for low collisionality axisimmetric tokamak plasmas”, Phys. Fluids, 5:2 (1993), 509–519

[76] D. P. Kostomarov, F. S. Zaitsev, “Fundamentalnye svoistva operatora kulonovskikh stolknovenii v usrednennom kineticheskom uravnenii”, DAN, 384:6 (2002), 747–750 | MR | Zbl