Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_10_a6, author = {V. G. Grudnitskii}, title = {The sufficient conditions of stability for discontinuous solutions calculation of conservation nonstationary laws in curvilinear coordinates and under right parts presence}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {76--80}, publisher = {mathdoc}, volume = {18}, number = {10}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a6/} }
TY - JOUR AU - V. G. Grudnitskii TI - The sufficient conditions of stability for discontinuous solutions calculation of conservation nonstationary laws in curvilinear coordinates and under right parts presence JO - Matematičeskoe modelirovanie PY - 2006 SP - 76 EP - 80 VL - 18 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2006_18_10_a6/ LA - ru ID - MM_2006_18_10_a6 ER -
%0 Journal Article %A V. G. Grudnitskii %T The sufficient conditions of stability for discontinuous solutions calculation of conservation nonstationary laws in curvilinear coordinates and under right parts presence %J Matematičeskoe modelirovanie %D 2006 %P 76-80 %V 18 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2006_18_10_a6/ %G ru %F MM_2006_18_10_a6
V. G. Grudnitskii. The sufficient conditions of stability for discontinuous solutions calculation of conservation nonstationary laws in curvilinear coordinates and under right parts presence. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 76-80. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a6/
[1] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Comm. Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl
[2] S. K. Godunov, “Raznostnyi metod rascheta udarnoi volny”, UMN, 12:1(73) (1957), 176–177 | MR | Zbl
[3] V. G. Grudnitskii, “Obobschennye kharakteristiki dlya sistemy uravnenii Eilera i ikh primenenie k konstruirovaniyu chislennykh skhem”, Matem. modelirovanie, 4:12 (1992), 45–48 | MR
[4] V. G. Grudnitskii, “Obobschennye kharakteristiki dlya sistemy uravnenii Eilera”, Algoritmy dlya chislennogo issledovaniya razryvnykh techenii, VTs RAN, 1993, 191–203 | MR
[5] V. G. Grudnitskii, “Obobschennye kharakteristiki i dostatochnoe uslovie ustoichivosti dlya uravnenii Eilera s razryvnymi resheniyami”, Matem. modelirovanie, 9:12 (1997), 121–125 | MR
[6] V. G. Grudnitskii, “Dostatochnoe uslovie ustoichivosti pri yavnom postroenii razryvnykh reshenii sistemy uravnenii Eilera”, Dokl. RAN, 362:3 (1998), 298–299 | MR
[7] V. G. Grudnitskii, “Dostatochnoe uslovie ustoichivosti mnogomernogo rascheta nestatsionarnykh razryvnykh reshenii uravnenii Eilera”, Matem. modelirovanie, 12:1 (2000), 65–77 | MR
[8] V. G. Grudnitskii, P. V. Plotnikov, “Obobschennye kharakteristiki i dostatochnoe uslovie ustoichivosti pri postroenii razryvnykh reshenii sistemy uravnenii Eilera”, Novoe v chislennom modelirovanii, 2000, 148–164 | MR
[9] V. G. Grudnitskiy, “Sufficient conditions of stability for discontinuous solutions of the Euler equations”, Computational Fluid Dynamics J., 10:2 (2001), 334–337
[10] V. G. Grudnitskii, “Pryamoi obobschenno-kharakteristicheskii metod dlya rascheta razryvnykh reshenii zakonov sokhraneniya gazovoi dinamiki”, Matem. modelirovanie, 16:1 (2004), 90–96 | Zbl
[11] V. G. Grudnitskii, “O dostatochnykh usloviyakh ustoichivosti dlya skhemy S. K. Godunova”, Matem. modelirovanie, 17:12 (2005), 119–128 | MR
[12] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl