Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2006_18_10_a11, author = {Yu. K. Dem'yanovich}, title = {Wavelet basis of $B_\varphi$-splines for irregular net}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {123--126}, publisher = {mathdoc}, volume = {18}, number = {10}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2006_18_10_a11/} }
Yu. K. Dem'yanovich. Wavelet basis of $B_\varphi$-splines for irregular net. Matematičeskoe modelirovanie, Tome 18 (2006) no. 10, pp. 123-126. http://geodesic.mathdoc.fr/item/MM_2006_18_10_a11/
[1] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, M., 1976 | MR
[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, M., 1980 | MR | Zbl
[3] Kalitkin N. N., Shlyakhov N. M., “$B$-splainy proizvolnoi stepeni”, DAN, 367:2 (1999), 157–160 | MR | Zbl
[4] M. D. Buhmann, “Multiquadratic Prewavelets on Nonequally Spaced Knots in One Dimension”, Math. of Comput., 64:212 (1995), 1611–1625 | DOI | MR | Zbl
[5] O. Davydov, G. Nurnberger, “Interpolation by $C^1$ splines of degree $q\geq4$ on triangulations”, J. Comput. and Appl. Math., 126 (2000), 159–183 | DOI | MR | Zbl
[6] Malla S., Veivlety v obrabotke signalov, M., 2005
[7] Burova I. G., Demyanovich Yu. K., “O gladkosti splainov”, Matem. modelirovanie, 16:12 (2004), 40–43 | MR | Zbl
[8] Burova I. G., Demyanovich Yu. K., “O splainakh maksimalnoi gladkosti”, Vestnik Sankt-Peterburgskogo universiteta, 1:4 (2004), 3–11 | MR | Zbl
[9] Demyanovich Yu. K., “O vlozhennosti prostranstv minimalnykh splainov”, Zh. vychislitelnoi matematiki i matematicheskoi fiziki, 40:7 (2000), 1012–1029 | MR