Solving the multicomponent diffusion problems by parallel matrix sweep algorithm
Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 85-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The parallel matrix sweep algorithm for solving the system of equations with block-diagonal matrices is proposed and realized on the Multiprocessor Computing System MVS-1000. This algorithm is implemented for solving the testing problem of multicomponent diffusion saturation of a plate. The numerical experiments on the investigation of efficiency and speed up coefficients of the parallel algorithm are carried out.
@article{MM_2005_17_9_a7,
     author = {E. N. Akimova and I. I. Gorbachev and V. V. Popov},
     title = {Solving the multicomponent diffusion problems by parallel matrix sweep algorithm},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {17},
     number = {9},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_9_a7/}
}
TY  - JOUR
AU  - E. N. Akimova
AU  - I. I. Gorbachev
AU  - V. V. Popov
TI  - Solving the multicomponent diffusion problems by parallel matrix sweep algorithm
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 85
EP  - 92
VL  - 17
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_9_a7/
LA  - ru
ID  - MM_2005_17_9_a7
ER  - 
%0 Journal Article
%A E. N. Akimova
%A I. I. Gorbachev
%A V. V. Popov
%T Solving the multicomponent diffusion problems by parallel matrix sweep algorithm
%J Matematičeskoe modelirovanie
%D 2005
%P 85-92
%V 17
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_9_a7/
%G ru
%F MM_2005_17_9_a7
E. N. Akimova; I. I. Gorbachev; V. V. Popov. Solving the multicomponent diffusion problems by parallel matrix sweep algorithm. Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 85-92. http://geodesic.mathdoc.fr/item/MM_2005_17_9_a7/

[1] Crank J., The Mathematics of Diffusion, Clarendon press, Oxford, 1975, 406 pp. | MR

[2] Shatinskii V. F., Nesterenko A. N., Zaschitnye diffuzionnye pokrytiya, Nauk. dumka, Kiev, 1988, 272 pp. | MR

[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983, 616 pp. | MR

[4] Popov V. V., Modelirovanie prevraschenii karbonitridov pri termicheskoi obrabotke stalei, UrO RAN, Ekaterinburg, 2003, 378 pp. | MR

[5] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 356 pp. | MR

[6] Akimova E. N., “Rasparallelivanie algoritma matrichnoi progonki”, Matematicheskoe modelirovanie, 6:9 (1994), 61–67 | MR | Zbl

[7] MPI: The Message Passing Interface, http://www.parallel.ru | MR

[8] Bokshtein B. S., Diffuziya v metallakh, Metallurgiya, M., 1978, 276 pp. | MR