Field numerical interpretation in the discrete Darwin model with implicit scheme calculation of particle dynamics
Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 53-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes an approach to constructing the stable procedure for numerical solving of Darwin self-consistent field equations in the discrete plasma model with an implicit approximation of particle motion equations.
@article{MM_2005_17_9_a4,
     author = {L. V. Borodachev},
     title = {Field numerical interpretation in the discrete {Darwin} model with implicit scheme calculation of particle dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--59},
     publisher = {mathdoc},
     volume = {17},
     number = {9},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_9_a4/}
}
TY  - JOUR
AU  - L. V. Borodachev
TI  - Field numerical interpretation in the discrete Darwin model with implicit scheme calculation of particle dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 53
EP  - 59
VL  - 17
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_9_a4/
LA  - ru
ID  - MM_2005_17_9_a4
ER  - 
%0 Journal Article
%A L. V. Borodachev
%T Field numerical interpretation in the discrete Darwin model with implicit scheme calculation of particle dynamics
%J Matematičeskoe modelirovanie
%D 2005
%P 53-59
%V 17
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_9_a4/
%G ru
%F MM_2005_17_9_a4
L. V. Borodachev. Field numerical interpretation in the discrete Darwin model with implicit scheme calculation of particle dynamics. Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 53-59. http://geodesic.mathdoc.fr/item/MM_2005_17_9_a4/

[1] Vlasov A. A., Teoriya mnogikh chastits, GITTL, M.-L., 1950, 348 pp.

[2] Frank-Kamenetskii D. A., Lektsii po fizike plazmy, Atomizdat, M., 1968, 286 pp.

[3] Darwin C. G., “The Dynamical Motion of Particles”, Phil. Mag., 39 (1920), 537

[4] B. Older, S. Fernbakh, M. Rotenberg (red.), Vychislitelnye metody v fizike plazmy, Mir, M., 1974, 514 pp. | MR

[5] Khokni R., Istvud Dzh., Chislennoe modelirovanie metodom chastits, Mir, M., 1987, 640 pp.

[6] Buznardo-Neto J., Pritchett P. L., Lin A. T., Dawson J. M., “A Self-Consistent Magnetostatic Particle Code for Numerical Simulation of Plasmas”, J. Comput. Phys., 23 (1977), 300 | DOI | MR

[7] Nilson K., Lyuis G., “Modeli ukrupnennykh chastits v bezyzluchatelnom predele”, Upravlyaemyi termoyadernyi sintez, Mir, M., 1980, 395

[8] Hewett D. W., “Elumination of Electromagnetic Radiation in Plasma Simulation: the Darwin or Magnetoinductive Approximation”, Space Sc. Rev., 42 (1985), 29 | DOI

[9] Weitzner H., Lawson W. S., “Boundary conditions for the Darvin model”, Phys. Fluids B, 1 (1989), 1953 | DOI | MR

[10] DiPeso G., Hewett D. W., Simonson G. F., “Extension of the stremlined Darwin Model to Quasineutral Plasmas”, J. Comp. Phys., 111 (1994), 237 | DOI | MR | Zbl

[11] Borodachev L. V., “Neyavnaya approksimatsiya uravnenii dvizheniya darvinskoi modeli plazmy”, ZhVM i MF, 30 (1991), 934 | MR

[12] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 504 pp. | MR

[13] Borodachev L. V., Darvinskoe opisanie samosoglasovannykh elektromagnitnykh polei plazmy i osobennosti ego diskretnoi interpretatsii, Prepr. fiz. fak. MGU: No 19/2000, M., 2000, 14 pp. | MR

[14] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[15] Rikhtmaier R. D., Raznostnye metody resheniya kraevykh zadach, IL, M., 1960, 262 pp. | MR

[16] Brackbill J. U., Forslund D. W., “An Implicit Method for Electromagnetic Plasma Simulation in Two-Dimensions”, J. Comput. Phys., 46 (1982), 271 | DOI | MR | Zbl

[17] Hewett D. W., Langdon A. B., “Electromagnetic Direct Implicit Plasma Simulation”, J. Comput. Phys., 72 (1987), 121 | DOI | MR | Zbl

[18] Borodachev L. V., “K probleme matematicheskogo modelirovaniya bezizluchatelnoi plazmy”, Vestn. MGU. Ser. 3, 34:3 (1993), 87 | MR