Global sensitivity indices for the investigation of nonlinear mathematical models
Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a review of the theory of global sensitivity indices, that allow to investigate numerically the structure of a nonlinear function defined analytically or as a “black box”.
@article{MM_2005_17_9_a3,
     author = {I. M. Sobol'},
     title = {Global sensitivity indices for the investigation of nonlinear mathematical models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {17},
     number = {9},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_9_a3/}
}
TY  - JOUR
AU  - I. M. Sobol'
TI  - Global sensitivity indices for the investigation of nonlinear mathematical models
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 43
EP  - 52
VL  - 17
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_9_a3/
LA  - ru
ID  - MM_2005_17_9_a3
ER  - 
%0 Journal Article
%A I. M. Sobol'
%T Global sensitivity indices for the investigation of nonlinear mathematical models
%J Matematičeskoe modelirovanie
%D 2005
%P 43-52
%V 17
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_9_a3/
%G ru
%F MM_2005_17_9_a3
I. M. Sobol'. Global sensitivity indices for the investigation of nonlinear mathematical models. Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 43-52. http://geodesic.mathdoc.fr/item/MM_2005_17_9_a3/

[1] I. M. Sobol, “Ob otsenke chuvstvitelnosti nelineinykh matematicheskikh modelei”, Matem. modelirovanie, 2:1 (1990), 112–118 | MR | Zbl

[2] A. Saltelli, I. M. Sobol, “Analiz chuvstvitelnosti nelineinykh matematicheskikh modelei: chislennye opyty”, Matem. modelirovanie, 7:11 (1995), 16–28 | MR | Zbl

[3] Proc: 1st Internat. Sympos. SAMO'95, Belgirate, 1995 | MR

[4] A. Saltelli, K. Chan, M. Scott (eds.), Comput. Phys. Commun., 117:1–2 (1999), 190, Special issue: SAMO 98. 2nd International Symposium on Sensitivity Analysis of Model Output. Venice, Italy, April 19–22, 1998 | MR | Zbl

[5] Proc: 3rd Internat. Sympos. SAMO'01, Madrid, 2001 | MR

[6] A. Saltelli, K. Chan, M. Scott (eds.), Sensitivity Analysis, J. Wiley, London, 2000 | MR | Zbl

[7] G. E. Archer, A. Saltelli, I. M. Sobol', “Sensitivity measures, ANOVA-like techniques and the use of bootstrap”, J. Stat. Comput. Simulation, 58 (1997), 99–120 | DOI | MR | Zbl

[8] I. M. Sobol', “Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates”, Maths and Computers in Simulation, 55:1–3 (2001), 271–280 | DOI | MR | Zbl

[9] H. Rabitz, O. F. Alis, J. Shorter, K. Shim, “Efficient input-output model representation”, Computer Phys. Communications, 117:1–2 (1999), 11–20 | DOI | MR | Zbl

[10] I. M. Sobol', “Theorems and examples on high dimensional model representations”, Reliability Engineering and System Safety, 79 (2003), 187–193 | DOI | MR

[11] A. Saltelli, “Making best use of model evaluations to compute sensitivity indices”, Computer Phys. Commumications, 145 (2002), 280–297 | DOI | MR | Zbl

[12] I. M. Sobol', S. S. Kucherenko, “On global sensitivity analysis of quasi-Monte Carlo algorithms”, Monte Carlo Methods Appl., 11:1 (2005), 83–92 | MR | Zbl