About one effective method of the Orr--Sommerfeld equation decision
Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral grid method of the Orr–Sommerfeld equation decision is resulted. The given method allows to define at once all own values of a task. The carried out accounts show efficiency of a method.
@article{MM_2005_17_9_a2,
     author = {Ch. B. Narmuradov},
     title = {About one effective method of the {Orr--Sommerfeld} equation decision},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {17},
     number = {9},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_9_a2/}
}
TY  - JOUR
AU  - Ch. B. Narmuradov
TI  - About one effective method of the Orr--Sommerfeld equation decision
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 35
EP  - 42
VL  - 17
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_9_a2/
LA  - ru
ID  - MM_2005_17_9_a2
ER  - 
%0 Journal Article
%A Ch. B. Narmuradov
%T About one effective method of the Orr--Sommerfeld equation decision
%J Matematičeskoe modelirovanie
%D 2005
%P 35-42
%V 17
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_9_a2/
%G ru
%F MM_2005_17_9_a2
Ch. B. Narmuradov. About one effective method of the Orr--Sommerfeld equation decision. Matematičeskoe modelirovanie, Tome 17 (2005) no. 9, pp. 35-42. http://geodesic.mathdoc.fr/item/MM_2005_17_9_a2/

[1] Ts. Ts. Lin, Teoriya gidrodinamicheskoi ustoichivosti, Inostr. lit., M., 1958, 195 pp. | MR

[2] R. Betchov, V. Kriminale, Voprosy gidrodinamicheskoi ustoichivosti, Mir, M., 1971, 350 pp. | MR | Zbl

[3] M. A. Goldshtik, V. N. Shtern, Gidrodinamicheskaya ustoichivost i turbulentnost, Nauka, Sib. Otd., Novosibirsk, 1977, 366 pp. | MR

[4] H. H. Thomas, “The stability of plane Poiseuille flow”, Phys. Rew., 91:4 (1953), 780–783 | DOI | MR | Zbl

[5] S. A. Orszag, “Numerical simulation of incompressible flows within simple boundaries I. Galerkin (Spectral) representations”, Stud. Appl. Math., 50:4 (1971), 293–327 | MR | Zbl

[6] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[7] A. Zharilkasinov, V. D. Liseikin, B. Yu. Skobelev, N. N. Yanenko, “Primenenie neravnomernoi setki dlya chislennogo resheniya zadachi Orra–Zommerfelda”, Chislen. metody mekhaniki sploshnoi sredy, 14, no. 5, Novosibirsk, 1983, 45–54 | MR

[8] A. G. Sleptsov, “Proektsionno-setochnye metody resheniya zadachi Orra–Zommerfelda”, Chislennye metody mekhaniki sploshnoi sredy, 14, no. 5, Novosibirsk, 1983, 111–126 | MR | Zbl

[9] V. V. Voevodin, Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977, 304 pp. | MR | Zbl

[10] S. A. Orszag, “Accurate solution of the Orr–Sommerfeld stability equation”, J. Fluid Mech., 50:4 (1971), 689–701 | DOI | MR

[11] A. A. Zebib, “Chebyshev method for the solution of boundary value problems”, J. Comput. Phys., 53:3 (1984), 443–455 | DOI | MR | Zbl

[12] C. E. Grosch, S. A. Orszag, “Numerical solution of problems in unbounded regions: coordinate transforms”, J. Comput. Phys., 25:3 (1977), 273–295 | DOI | MR | Zbl